PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting current and future invasion of Solidago canadensis; a study from China

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solidago canadensis, which is native to North America, is considered to be the most widespread invasive alien plant. The invasion of Solidago canadensis in China has resulted in serious environmental problems. Therefore, understanding the relationship between the geographical distribution of S. canadensis and bioclimatic variables, and then predicting the potential distribution of this species is essential for management actions and practices. Although several studies have delineated the potential distribution of S. canadensis in China, how this species would respond to variations in future climatic conditions remains unclear. In the present study, we predicted the potential distribution of S. canadensis under current and future climatic conditions using species distribution models. We also analyzed range shifting of this species under current and future climatic conditions. We arrived at several conclusions. First, the potential distribution of S. canadensis may expand 40% under future climatic condition compare with that of under current condition. Second, mean diurnal range, isothermality, mean temperature of the wettest quarter, mean temperature of the warmest quarter, precipitation of the driest month, and precipitation seasonality (coefficient of variation) are key bioclimatic variables in determine the potential distribution of S. canadensis. Third, expansion of S. canadensis can be partly attributed to the relatively warmer and wetter future bioclimatic condition than current one.
Rocznik
Strony
263--271
Opis fizyczny
Bibliogr. 44 poz., il.
Twórcy
autor
  • College of Resource and Environmental Science and Key Laboratory of Oasis Ecology of the Ministry of Education, Xinjiang University, Urumqi 830002, China
autor
  • Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, 430074, China
autor
  • Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 83001, China
  • College of Resource and Environmental Science and Key Laboratory of Oasis Ecology of the Ministry of Education, Xinjiang University, Urumqi 830002, China
Bibliografia
  • 1. Ashcroft M.B., French K.O., Chisholm L.A. 2010 – An evaluation of environmental factors affecting species distributions – Ecol. Model. 222: 524–521.
  • 2. Barbosa A.M., Real R., Vargas J.M. 2009 - Transferability of environmental favourability models in geographic space: the case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain – Ecol. Model. 222: 747–754.
  • 3. Barrows C.W., Preston K.L., Rotenberry J.T., Allen M.F. 2008 – Using occurrence records to model historic distributions and estimate habitat losses for two psammophilic lizards – Biol. Conserve. 141:1885–1893.
  • 4. Bradley B., Oppenheimer M., Wilcove D. 2009 – Climate change and plant invasions: restoration opportunities ahead? – Global. Change. Biol. 15: 1511–1521.
  • 5. Contreras V., Martínez-Meyer E., Valiente E., Zambrano L. 2009 – Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum) – Biol. Conserv. 142: 2881–2885.
  • 6. Elith J., Graham C., Anderson R., Dudík M., Ferrier S., Guisan A., Hijmans R., Huettmann F., Leathwick J., Lehmann A., Li J., Lohmann L., Loiselle B., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J., Peterson A., Phillips S., Richardson K., Scachetti-Pereira R., Schapire R., Soberón J., Williams S., Wisz M., Zimmermann N. 2006 - Novel methods improve prediction of species’ distributions from occurrence data - Ecography, 29: 129–151.
  • 7. Elith J., Kearney M., Phillips S. 2010 – The art of modelling range shifting species – Methods. Ecol. Evol. 1: 330–342.
  • 8. Franklin J., Davis F.W., Ikegami M., Syphard A.D., Fint L.E., Flint A.L., Hannah L. 2013 – Modeling plant species distributions under future climate: how fine-scale do climate projections need to be? – Global. Change. Biol. 19: 473–483.
  • 9. Gallien L., Munkemuller T., Albert C.H., Boulangeat I., Thuiller W. 2010 – Predicting potential distributions of invasive species: where to go from here? – Divers. Distrib. 16: 331–342.
  • 10. Giovanelli J.G.R., Haddad F.B., Alexandrino J. 2007 – Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil – Biol. Invasions. 10: 585–590.
  • 11. Guisan A., Thuiller W. 2005 – Predicting species distribution: offering more than simple habitat models – Ecol. Lett. 8: 993–1009.
  • 12. Guo S. 2005 – S. canadensis niche and influences of its invasion on plant communities – J. Biomathematics, 20: 91–96 (in Chinese, English summary).
  • 13. Herborg L., O’Hara P., Therriault T.W. 2009 – Forecasting the potential distribution of the invasive tunicate Didemnum vexillum – J. Appl. Ecol. 46: 64–72.
  • 14. Hidalgo P.J., Marín J.M., Quijada J., Moreira J.M. 2008 – A spatial distribution model of cork oak (Quercus subuer) in southwestern Spain: A suitable tool for reforestation - Forest. Ecol. Manag. 255: 25–34.
  • 15. Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jar vis A. 2005 – Very high resolution interpolated climate surfaces for global land areas – Int. J. Climatol. 25: 1965–1978.
  • 16. Hof A.R., Jansson R., Nilsson C. 2012 – The usefulness of elevation as a predictor variable in species distribution modeling – Ecol. Model. 246: 86–90.
  • 17. Kabuce N., Priede N. 2010 – NOBANIS – Invasive Alien Species Fact Sheet – S. canadensis [Internet]. Online Database of the North European and Baltic Network on Invasive Alien Species – NOBANIS; [cited 2013 Mar 17]. Available from: www.nobanis.org
  • 18. Kikillus K.H., Hare K.M., Hartley S. 2010 - Minimizing false-negatives when predicting the potential distribution of an invasive species: a bioclimatic envelope for the red-eared slider at global and regional scales – Anim. Conserv. 13: 5–15.
  • 19. Lassueur T., Joost S., Randin C.F. 2006 – Very high resolution digital elevation models: Do they improve models of plant species distributions? - Ecol. Model. 198: 139–153.
  • 20. Latimer A., Wu S., Gelfand A.E., Silander J.A. 2006 – Building statistical models to analyze species distributions – Ecol. Appl. 16: 33–50.
  • 21. Le Maitre D.C., Thuiller W., Schonegevel L. 2008 – Developing an approach to defining the potential distributions of invasive plant species: a case study of Hakea species in South Africa – Global. Ecol. Biogeogr. 17: 569–584.
  • 22. Lei J., Xu H. 2010 – Maxent-based prediction of potential distribution of S. canadensis in China – J. Ecol. Rural Environ. 26: 137–141 (in Chinese, English summary).
  • 23. Leistritz F.L., Bangsund D.A., Hodur N.M. 2004 – Assessing the economic impact of invasive weeds: the case of leafy Spurge (Euphorbia esula) – Weed. Technol. 18: 1392–1395.
  • 24. Leng W., He H.S., Bu R., Dai L., Hu Y., Wang X. 2008 – Predicting the distributions of suitable habitat for three larch species under climate warming in Northeastern China – Forest. Ecol. Manag. 254: 420–428.
  • 25. Liu C.R., White M., Newell G. 2011 – Measuring and comparing the accuracy of species distribution models with presence–absence data – Ecography, 34: 232–243.
  • 26. Munguía M., Rahbek C., Rangel T., Diniz-Filho J.A.F., Araújo M.B. 2012 - Equilibrium of global amphibian species distributions with climate – PloS ONE, 7(4): e34420.
  • 27. Noe G.B., Zedler J.B. 2001 – Variable rainfall limits the germination of upper intertidal marsh plants in Southern California – Estuaries, 24: 30–40.
  • 28. Peterson A.T. 2003 – Predicting the geography of species’ invasions via ecological niche modeling - Q. Rev. Biol. 78: 419–433.
  • 29. Phillips S.J., Anderson R.P., Schapire R.E. 2006 – Maxent entropy modeling of species geographic distribution – Ecol. Model. 190: 231–259.
  • 30. Phillips S.J., Dudik M. 2008 – Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation – Ecography, 31: 161–175.
  • 31. Pollock L.J., Morris W.K., Vesk P.A. 2012 - The role of functional traits in species distributions revealed through a hierarchical model - Ecography, 35: 716–725.
  • 32. Prates-Clark C.D.C., Saatchi S.S., Agosti D. 2008 – Predicting geographical distribution models of high–value timber trees in the Amazon Basin using remotely sensed data – Ecol. Model. 211: 309–323.
  • 33. Robert J., Fletcher J., Richard L.H. 2008 – Partitionning the multi-scale effects of human activity on the occurrence of ripirian forest birds – Landscape. Ecol. 23: 727–739.
  • 34. Sánchez-Flores E. 2007 – GARP modeling of natural and human factors affecting the potential distribution of the invasives Schismus arabicus and Brassica tournefortii in ‘El pinacate y Gran Desierto de Altar’ Biosphere Reserve - Ecol. Model. 204: 457–474.
  • 35. Sanderson E.W., Jaiteh M., Levy M.A., Redford K.H., Wannebo A.V., Woolmer G. 2002 – The Human Footprint and the Last of the Wild – Bioscience, 52: 891–904.
  • 36. Sobek-Swant S., Kluza D.A., Cuddington K., Lyons D.B. 2012 – Potential distribution of emerald ash borer: What can we learn from ecological niche models using Maxent and GARP? – Forest. Ecol. Manag. 281: 23–31.
  • 37. Turner M.G., Pearson S.M., Bolstad P., Wear D.N. 2003 – Effects of land-cover change on spatial pattern of forest communities in the Southern Appalachian Mountains (USA) – Landscape. Ecol. 18: 449–464.
  • 38. Vanderwal J., Shoo L.P., Graham C., William S.E. 2009 – Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? - Ecol. Model. 220: 589–594.
  • 39. Walck J.L., Baskin J.M., Baskin C.C. 1999 - Relative competitive abilities and growth characteristics of a narrowly endemic and geographically widespread Solidago species (Asteraceae) – Am. J. Bot. 86: 820–828.
  • 40. Weber T.C. 2011 – Maximum entropy modeling of mature hardwood forest distribution in four U.S. states – Forest. Ecol. Manag. 261: 779–788.
  • 41. Werner P.A., Bradbury I.K., Gross R.S. 1980 – The biology of Canadian weeds. 45. S. canadensis L – Can. J. Plant. Sci. 60: 1393–1409.
  • 42. Xu Z.L., Zhao C.Y., Feng Z.D. 2012. Projected ecological niche and deforested area of Picea crassifolia (Qinghai spruce) in Qilian Mountains National Natural Reserve, China – Pol. J. Ecol. 60: 515–524.
  • 43. Xu Z.L., Feng Z.D., Yang J.J., Zheng J.H., Zhang F. 2013 – Nowhere to invade: Rumex cripus and Typha latifolia projected to disappear under future climate scenarios. PLOS ONE, 8: e70728. doi:10.1371/journal.pone.0070728.
  • 44. Yu Y., Chen L.L., He X.J. 2009 – Potential distribution of S. canadensis (Asteraceae) in China as Predicted by GARP – Acta Botanica Yunnanica, 31: 57–62 (in Chinese, English summary).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eac34d20-7659-4bd6-bcd8-a296aec94b59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.