Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims to enhance the performance of reverse osmosis (RO), a significant membrane technology for water desalination, by improving its permeation flux and rejection of NaCl, which is considered a powerful tool for fouling control. The air sparging approach has been implemented and examined at different air flow rates to achieve this. RO system with air sparging technique has been studied at various operating conditions such as air flow rate range from 1–3 L/min, feed concentration (2000 and 3000 ppm), water flow rate (1 and 1.3 L/min), temperature (20 and 32 °C), and applied pressure (4 and 5 bar). The result confirmed a significant improvement in permeate flux and rejection when the air is injected into the RO system. It revealed that increasing the air flow rate increased the flux, reaching a maximum value at an air flow rate of 1.8 L/min, after that, it started to decline. Additionally, increasing the water flow rate, pressure, and temperature increased the permeate flux. On the other hand, increased feed concentrations negatively impacted the permeate flux. The maximum flux and rejection obtained was 10.76 L/m2·hr and 96.17% at 5 bar, 3000 ppm, 1 L/min water flow rate, and T = 32 ± 1 °C. Moreover, the value of the injection factor is equal to 0.64, indicating that the flow pattern was the slug flow, which represented a highly effective flow regime.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
99--107
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
autor
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
- 1. Al-Alawy, A. F. (2011). Forward and reverse osmosis process for recovery and re-use of water from polluted water by phenol. Journal of Engineering, 17(4), 912–928. https://doi.org/10.31026/j.eng.2011.04.20
- 2. Al-Alawy, A. F., & Salih, M. H. (2016). Experimental study and mathematical modelling of zinc removal by reverse osmosis membranes. Iraqi Journal of Chemical and Petroleum Engineering, 17(3), 57–73.
- 3. Al-Alawy, A. F., & Salih, M. H. (2017). Comparative study between nanofiltration and reverse osmosis membranes for the removal of heavy metals from electroplating wastewater. Journal of Engineering, 23.
- 4. Al-Mutaz, I. S., & Al-Ghunaimi, M. A. (2001). Performance of reverse osmosis units at high temperatures. The Ida World Congress on Desalination and Water Reuse, 26–31.
- 5. Aliyu, U. M., Rathilal, S., & Isa, Y. M. (2018). Membrane desalination technologies in water treatment: A review. In Water Practice and Technology 13(4), 738–752. IWA Publishing. https://doi.org/10.2166/wpt.2018.084
- 6. Alsalhy, Q. F., Albyati, T. M., & Zablouk, M. A. (2013). A study of the effect of operating conditions on reverse osmosis membrane performance with and without air sparging technique. Chemical Engineering Communications, 200(1), 1–19. https://doi.org/10.1080/00986445.2012.685529
- 7. Asefi, H., Alighardashi, A., Fazeli, M., & Fouladitajar, A. (2019). CFD modeling and simulation of concentration polarization reduction by gas sparging cross-flow nanofiltration. Journal of Environmental Chemical Engineering, 7(5). https://doi.org/10.1016/j.jece.2019.103275
- 8. Biesheuvel, P. M., Dykstra, J. E., Porada, S., & Elimelech, M. (2022). New parametrization method for salt permeability of reverse osmosis desalination membranes. Journal of Membrane Science Letters, 2(1), 100010. https://doi.org/10.1016/j.memlet.2021.100010
- 9. Boricha, A. G., & Murthy, Z. V. P. (2009). Preparation, characterization and performance of nanofiltration membranes for the treatment of electroplating industry effluent. Separation and Purification Technology, 65(3), 282–289.
- 10. Chaudhary, A. J., Ganguli, B., & Grimes, S. M. (2006). The regeneration and recycle of chromium etching solutions using concentrator cell membrane technology. Chemosphere, 62(5), 841–846.
- 11. Cheryan, M. (1998). Ultrafiltration and microfiltration handbook. CRC press.
- 12. Choi, J., Lee, H., & Son, Y. (2021). Effects of gas sparging and mechanical mixing on sonochemical oxidation activity. Ultrasonics Sonochemistry, 70(September 2020), 105334. https://doi.org/10.1016/j.ultsonch.2020.105334
- 13. Chougradi, A., Zaviska, F., Abed, A., Harmand, J., Jellal, J.-E., & Heran, M. (2021). Batch reverse osmosis desalination modeling under a time-dependent pressure profile. Membranes, 11(3), 173.
- 14. Crittenden, J. C. (2012). Water treatment principles and design. John Wiley.
- 15. Cui, Z. F., Chang, S., & Fane, A. G. (2003). The use of gas bubbling to enhance membrane processes. In Journal of Membrane Science 221(1–2), 1–35. Elsevier. https://doi.org/10.1016/S0376-7388(03)00246-1
- 16. Curto, D., Franzitta, V., & Guercio, A. (2021). A review of the water desalination technologies. In Applied Sciences (Switzerland) 11(2), 1–36. MDPI AG. https://doi.org/10.3390/app11020670
- 17. Dimitriou, E., Boutikos, P., Mohamed, E. S., Koziel, S., & Papadakis, G. (2017). Theoretical performance prediction of a reverse osmosis desalination membrane element under variable operating conditions. Desalination, 419(November 2016), 70–78. https://doi.org/10.1016/j.desal.2017.06.001
- 18. Ducom, G., Matamoros, H., & Cabassud, C. (2002). Air sparging for flux enhancement in nanofiltration membranes: Application to O/W stabilised and nonstabilised emulsions. Journal of Membrane Science, 204(1–2), 221–236. https://doi.org/10.1016/S0376-7388(02)00044-3
- 19. Fouladitajar, A., Zokaee Ashtiani, F., Rezaei, H., Haghmoradi, A., & Kargari, A. (2014). Gas sparging to enhance permeate flux and reduce fouling resistances in cross flow microfiltration. Journal of Industrial and Engineering Chemistry, 20(2), 624–632. https://doi.org/10.1016/j.jiec.2013.05.025
- 20. Goh, P. S., Zulhairun, A. K., Ismail, A. F., & Hilal, N. (2019). Contemporary antibiofouling modifications of reverse osmosis desalination membrane: A review. Desalination, 468(April). https://doi.org/10.1016/j.desal.2019.114072
- 21. Golrokh Sani, A., Najafi, H., & Azimi, S. S. (2021). CFD simulation of air-sparged slug flow in the flat-sheet membrane: A concentration polarization study. Separation and Purification Technology, 270. https://doi.org/10.1016/j.seppur.2021.118816
- 22. Haidari, A. H., Heijman, S. G. J., & van der Meer, W. G. J. (2018). Optimal design of spacers in reverse osmosis. In Separation and Purification Technology 192, 441–456. Elsevier B.V. https://doi.org/10.1016/j.seppur.2017.10.042
- 23. Hassan, H. A., Al-Alawy, A. F., & Al-shaeli, M. (2024). Utilizing hybrid RO-OARO systems as new methods for desalination process. Iraqi Journal of Chemical and Petroleum Engineering, 25(1), 23–35. https://doi.org/10.31699/ijcpe.2024.1.3
- 24. Jamal, K., Khan, M. A., & Kamil, M. (2004). Mathematical modeling of reverse osmosis systems. Desalination, 160(1), 29–42. https://doi.org/10.1016/S0011-9164(04)90015-X
- 25. Joo, S. H., & Tansel, B. (2015). Novel technologies for reverse osmosis concentrate treatment: A review. In Journal of Environmental Management 150, 322–335. Academic Press. https://doi.org/10.1016/j.jenvman.2014.10.027
- 26. Liu, H., Gu, J., Wang, S., Zhang, M., & Liu, Y. (2020). Performance, membrane fouling control and cost analysis of an integrated anaerobic fixed-film MBR and reverse osmosis process for municipal wastewater reclamation to NEWater-like product water. Journal of Membrane Science, 593(August 2019), 117442. https://doi.org/10.1016/j.memsci.2019.117442
- 27. Mohammed, H. K., Al-Alawy, A. F., Abbas, T. R., Al-Mosawi, A. I., & Salih, M. H. (2024). Mathematical modeling of osmotic membrane bioreactor process for oily wastewater treatment. Water Science and Technology, 90(7), 2234–2250. https://doi.org/10.2166/wst.2024.318
- 28. Ozaki, H., Sharmab, K., & Saktaywirf, W. (2002). DESALINATION Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination, 144, 287–294.
- 29. Park, E., & Barnett, S. M. (2001). Oil/water separation using nanofiltration membrane technology. Separation Science and Technology, 36(7), 1527–1542. https://doi.org/10.1081/SS-100103886
- 30. Park, H. D., Lee, Y. H., Kim, H. B., Moon, J., Ahn, C. H., Kim, K. T., & Kang, M. S. (2010). Reduction of membrane fouling by simultaneous upward and downward air sparging in a pilot-scale submerged membrane bioreactor treating municipal waste-water. Desalination, 251(1–3), 75–82. https://doi.org/10.1016/j.desal.2009.09.140
- 31. Psoch, C., & Schiewer, S. (2005). Critical flux aspect of air sparging and backflushing on membrane bioreactors. Desalination, 175, 61–71. https://doi.org/10.1016/j
- 32. Qadri, A., & Alam, M. (2024). Drinking water treatment using advanced oxidation processes. International Journal of Chemical and Biochemical Sciences, 25(14), 154–163. https://www.iscientific.org/wp-content/uploads/2024/03/19-IJCBS-24-25-14-19.pdf
- 33. Qasim, M., Badrelzaman, M., Darwish, N. N., Darwish, N. A., & Hilal, N. (2019). Reverse Osmosis Desalination: A State-of-the-Art Review. Desalination, 459, 59–104.
- 34. Saleem, H., & Zaidi, S. J. (2020). Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination, 475(October 2019), 114171. https://doi.org/10.1016/j.desal.2019.114171
- 35. Salih, M. H., & Al-Alawy, A. F. (2022a). A novel forward osmosis for treatment of high-salinity East Baghdad oilfield produced water as a part of a zero liquid discharge system. Desalination and Water Treatment, 248, 18–27. https://doi.org/10.5004/dwt.2022.28070
- 36. Salih, M. H., & Al-Alawy, A. F. (2022b). MgCl2 and MgSO4 as draw agents in forward osmosis process for East Baghdad oilfield produced water treatment. Desalination and Water Treatment, 256, 80–88. https://doi.org/10.5004/dwt.2022.28408
- 37. Salih, M. H., Al-Alawy, A. F., & Ahmed, T. A. (2021). Oil skimming followed by coagulation/flocculation processes for oilfield produced water treatment and zero liquid discharge system application. AIP Conference Proceedings, 2372(November). https://doi.org/10.1063/5.0065365
- 38. Salih, M. H., Al-Yaqoobi, A. M., Hassan, H. A., & Al-Alawy, A. F. (2023). Assessment of the Pressure Driven Membrane for the Potential Removal of Aniline from Wastewater. Journal of Ecological Engineering, 24(8), 118–127. https://doi.org/10.12911/22998993/166283
- 39. Salih, M. H., Hassan, H. A., Al-Alawy, R. M., Zaboon, S., Al-Alawy, A. F., & Al-Jendeel, H. A. (2024). Green power generation from the Tigris River using pressure retarded osmosis process. Desalination and Water Treatment, 320(June), 100887. https://doi.org/10.1016/j.dwt.2024.100887
- 40. Sivaprakash, P., & DasGupta, S. (2015). Effect of air sparging on flux enhancement during tangential flow filtration of degreasing effluent. Desalination and Water Treatment, 53(1), 73–83. https://doi.org/10.1080/19443994.2013.839400
- 41. Timmer, J. M. K., Van Der Horst, H. C., & Robbertsen, T. (1993). Transport of lactic acid through reverse osmosis and nanofiltration membranes. In Journal of Membrane Science 85.
- 42. Ujang, Z., & Anderson, G. K. (1998). Performance of low pressure reverse osmosis membrane (LPROM) for separating mono- and divalent ions. Water Science and Technology, 38(4-5–5 pt 4), 521–528. https://doi.org/10.1016/S0273-1223(98)00553-8
- 43. Vinardell, S., Sanchez, L., Astals, S., Mata-Alvarez, J., Dosta, J., Heran, M., & Lesage, G. (2022). Impact of permeate flux and gas sparging rate on membrane performance and process economics of granular anaerobic membrane bioreactors. Science of the Total Environment, 825, 153907. https://doi.org/10.1016/j.scitotenv.2022.153907
- 44. Vu, M. T., Nguyen, L. N., Johir, M. A. H., Zhang, X., Long, D. N., & Elimelech, M. (2021). Biogas sparging to control fouling and enhance resource recovery from anaerobically digested sludge centrate by forward osmosis. Journal of Membrane Science, 0–22.
- 45. Wang, Z., Liu, G., Fan, Z., Yang, X., Wang, J., & Wang, S. (2007). Experimental study on treatment of electroplating wastewater by nanofiltration. Journal of Membrane Science, 305(1–2), 185–195.
- 46. Wei, X., Kong, X., Wang, S., Xiang, H., Wang, J., & Chen, J. (2013). Removal of heavy metals from electroplating wastewater by thin-film composite nanofiltration hollow-fiber membranes. Industrial & Engineering Chemistry Research, 52(49), 17583–17590.
- 47. Yao, Y., Zhang, P., Jiang, C., DuChanois, R. M., Zhang, X., & Elimelech, M. (2021). High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nature Sustainability, 4(2), 138–146. https://doi.org/10.1038/s41893-020-00619-w
- 48. Younos, T., & Tulou, K. E. (2009). Overview of Desalination Techniques. Journal of Contemporary Water Research & Education, 132(1), 3–10. https://doi.org/10.1111/j.1936-704x.2005.mp132001002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eab87bd0-889b-4632-8d1e-cd42c99bb8df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.