Identyfikatory
Warianty tytułu
Porównanie efektywności wyodrębniania terenów zabudowanych na obrazach lotniczych przy pomocy analizy fraktalnej i granulometrii morfologicznej
Języki publikacji
Abstrakty
The paper presents a comparison of results of the automatic extraction of built-up areas, based on fractal analysis and granulometric maps, in the aerial images. Built-up areas as a land-use class can be clearly seen in an aerial or satellite image, due to its high granularity, but for the same reason they are very difficult to extract using a “traditional” non-contextual, pixel-based classification. Both approaches presented in the paper, using fractal analysis and morphological granulometry, base generally on a pixel-based classification, but performed on images reviously processed using these two types of processes. Fractal analysis consists in an empirical computing of fractal dimension of parts of an image, using a box-counting method. Such an approach generates an image where pixel values are equal to a fractal dimension values of their neighbourhood. Since we can interpret a fractal dimension as a level of granularity, a simple reclassification of such an image can improve a performance of an automatic extraction of built-up area effectively. The approach based on a morphological granulometry creates a number of granulometric maps – images where pixel values mean an amount of objects of certain size in a set neighbouring fragment of an image. This way a number of these images can be processed using a pixel-based classification, to perform an effective extraction of built-up areas in an image. The results of the presented approaches have been compared to the reference mask obtained basing on a visual interpretation of the image.
Czasopismo
Rocznik
Tom
Strony
29--37
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab.
Twórcy
autor
- Politechnika Warszawska,, Wydział Geodezji i Kartografii, Pl. Politechniki 1, 00-661 Warszawa
autor
- Politechnika Warszawska,, Wydział Geodezji i Kartografii, Pl. Politechniki 1, 00-661 Warszawa
autor
- Politechnika Warszawska,, Wydział Geodezji i Kartografii, Pl. Politechniki 1, 00-661 Warszawa
Bibliografia
- BLASCHKE T., LANG S., LORUP E., STROBL J., ZEIL P., 2000. Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications. In: Cremers, A., Greve, K., eds.), Environmental Information for Planning, Politics and the Public, vol. II. Metropolis-Verlag, Marburg, p. 550-570.
- CHMIEL J., 2002. Zastosowanie teledetekcji i GIS do zwiększania dokładności opisu struktury przestrzennej obszaru zlewni. Praca doktorska, Politechnika Warszawska, Warszawa.
- DOUGHERTY E.R., PELZ J.B., SAND F., LENT A., 1992. Morphological Image Segmentation by Local Granulometric Size Distributions. Journal of Electronic Imaging, 1(1), p. 46-60.
- ENCARNAÇÃO S., GAUDIANO M., SANTOS M. G., TENEDÓRIO J. A., PACHECO J. M., 2012. Fractal cartography of urban areas. Scientific Reports, 2, 527, p. 1-5.
- FALCONER K., 2003. Fractal Geometry. John Wiley, New York.
- FLEISS J.L., 1981. Statistical methods for rates and proportions. 2nd ed., John Wiley, New York.
- FLOUZAT G., 1989. Review on Image Analysis with Mathematical Morphology in Remote Sensing. IGARSS ‘89/12th Canadian Symposium on Remote Sensing, Vancouver, B.C., 3, p. 2424-2429.
- HARALICK R.M., STERNBERG S. R., ZHUANG X., 1987. Image Analysis using Mathematical Morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(4), p. 532-550.
- JENSEN J. R., 1996. Introductory Digital Image Processing, A Remote Sensing Perspective. Prentice Hall, New Jersey.
- KHOKHA M.K., 1996. Fractal Geometry in Biological Systems. CRC Press, Boca Raton.
- KUPIDURA P., 2006. Zastosowanie wybranych operacji morfologii matematycznej do wydzielania klas pokrycia terenu na zdjęciach satelitarnych. Praca doktorska, Politechnika Warszawska, Warszawa.
- KUPIDURA P., 2010. Semi-automatic method for a built-up area intensity survey using morphological granulometry. Ecological Questions, 28, p. 271-277.
- KUPIDURA P., 2015. Wykorzystanie granulometrii obrazowej w klasyfikacji treści zdjęć satelitarnych. Prace Naukowe, Geodezja z. 55, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa., p. 271.
- KUPIDURA P., KOZA P., MARCINIAK J., 2010. Morfologia matematyczna w teledetekcji. Wydawnictwo Naukowe PWN, Warszawa, p. 168.
- LANDIS J.R., KOCH G.G., 1977. The measurement of observer agreement for categorical data. Biometrics, 33(1), p. 159–174.
- LIU J.Z., ZHANG L.D., YUE G.H., 2003. Fractal Dimension in Human Cerebellum Measured by Magnetic Resonance Imaging. Biophysical Journal 85(6), p. 4041–4046.
- MANDELBROT B.B., 1983. The Fractal Geometry of Nature. Henry Holt and Company, Iannaccone, p. 468.
- NIENIEWSKI M. 1998., Morfologia matematyczna w przetwarzaniu obrazów. Akademicka Oficyna Wydawnicza PLJ, Warszawa, p. 311.
- NIENIEWSKI M., 2005. Segmentacja obrazów cyfrowych. Metody segmentacji wododziałowej. Akademicka Oficyna Wydawnicza EXIT, Warszawa, s. 184.
- SERRA J.,1982, Image Analysis and Mathematical Morphology, vol.1. Academic Press, London, p. 18-610.
- SERRA J., 1986. Introduction to mathematical morphology. Computer Vision Graphics and Image Processing, 35(3), p. 283-305.
- SERRA J., (ed.) 1988. Image Analysis and Mathematical Morphology, vol. 2: Theoretical Advances. Academic Press, New York, p. 411.
- SHEN G., 2002. Fractal dimension and fractal growth of urbanized areas. International Journal of Geographical Information Science, 16(5), p. 419-437.
- SMITH T. G., LANGE G. D., MARKS W. B., 1996. Fractal methods and results in cellular morphology - dimensions, lacunarity and multifractals. Journal of Neuroscience Methods, 69(2), p. 123–136.
- SUN W., XU G., GONG P., LIANG S., 2006. Fractal analysis of remotely sensed images: A review of methods and applications. International Journal of Remote Sensing, 27(22), p. 4963-4990.
- WALTER V., 2004. Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3-4), p. 225-238.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eab7bb87-51b9-47e6-8ac7-536de17dc24b