PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

What do the K-Ar ages of illite tell us about the diagenesis of Rotliegend sandstones of the Fore-Sudetic Monocline, SW Poland?

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The all available K-Ar data of authigenic illite from Rotliegend aeolian sandstones of the Fore-Sudetic Monocline, including the results from six samples examined in the present study, are reviewed in terms of their geological meaning, relation to diagenetic processes occurring in the sandstones, and implications for a petroleum system. The majority of ages fall in the range between 195 and 150 Ma, i.e. they correspond to Jurassic times. The results may be grouped in several time intervals, which are almost identical to those identified for Rotliegend sandstones of central and western Europe, and which are interpreted as pulses of intensive illite growth. The K-Ar data corroborate the long-held assumption that throughout the entire Southern Permian Basin Jurassic illite growth was triggered by the same, large-scale underlying processes, which manifested themselves in enhanced heat flow. These processes may also have caused the expulsion of hydrocarbons from source rocks.
Słowa kluczowe
Rocznik
Strony
257--270
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
  • University of Poznań, Institute of Geology, Maków Polnych 16, 61-606 Poznań, Poland
Bibliografia
  • 1. Bechtel, A., Elliott, W.C., Wampler, J.M., Oszczepalski, S., 1999. Clay mineralogy, crystallinity, and K-Ar ages of illites within the Polish Zechstein Basin: implications for the age of the Kupferschiefer mineralization. Economic Geology, 94: 261-272.
  • 2. Biernacka, J., 2014. Pore-lining sudoite in Rotliegend sandstones from the eastern part of the Southern Permian Basin. Clay Minerals, 49: 635-655.
  • 3. Biernacka, J., Leśniak, G., Buniak, A., 2006. The influence of compaction and cementation on reservoir properties of Rotliegend sandstones from the Fore-Sudetic Monocline (in Polish with English summary). Prace Instytutu Nafty i Gazu, 134: 1-67.
  • 4. Bonhomme, M.G., Bühmann, D., Besnus, Y., 1983. Reliability of K-Ar dating of clays and silicifications associated with vein mineralizations in Western Europe. Geologische Rundschau, 72: 105-117.
  • 5. Botor, D., 2011. One-dimensional modelling of gas generation processes in Carboniferous sediments from the deep part of Polish Rotliegend basin (in Polish with English summary). Geologia, 37: 503-516.
  • 6. Botor, D., Papiernik, B., Maćkowski, T., Reicher, B., Kosakowski, P., Machowski, G., Górecki, W., 2013. Gas generation in Carboniferous source rocks of the Variscan foreland basin: implications for a charge history of Rotliegend deposits with natural gases. Annales Societatis Geologorum Poloniae, 83: 353-383.
  • 7. Bylina, P., 2006. Low-grade metamorphism of Permian mafic rocks from the Gorzów Wielkopolski Block (Fore-Sudetic Monocline, SW Poland): age and mechanism. Mineralogia Polonica, 37: 3-50.
  • 8. Cathelineau, M., Boiron, M.-C., Fourcade, S., Ruffet, G., Clauer, N., Belcourt, O., Coulibaly, Y., Banks, D.A., Guillocheau, F., 2012. A major Late Jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K-Ar dating, fluid chemistry, and related geodynamic context. Chemical Geology, 322-323: 99-120.
  • 9. Clauer, N., 2013. The K-Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals. Chemical Geology, 354: 163-185.
  • 10. Clauer, N., Chaudhuri, S., 1995. Clays in Crustal Environment. Isotope Dating and Tracing. Springer-Verlag, Heidelberg.
  • 11. Clauer, N., Zwingmann, H., Chaudhuri, S., 1996. Isotopic (K-Ar and oxygen) constraints on the extent and importance of the Liassic hydrothermal activity in western Europe. Clay Minerals, 31: 301-318.
  • 12. Clauer, N., Środoń, J., Francu, J., Šucha, V., 1997. K-Ar dating of illite fundamental particles separated from illite-smectite. Clay Minerals, 32: 181-196.
  • 13. Clauer, N., Liewig, N., Zwingmann, H., 2012. Time-constrained illitization in gas-bearing Rotliegende (Permian) sandstones from northern Germany by illite potassium-argon dating. AAPG Bulletin, 96: 519-543.
  • 14. Eberl, D.D., Velde, B., 1989. Beyond the Kubler index. Clay Minerals, 24: 571-577.
  • 15. Fischer, C., Dunkl, I., Eynatten, H., von, Wijbrans, J.R., Gaupp, R., 2012. Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany). Geological Magazine, 149: 827-840.
  • 16. Gast, R., Dusar, M., Breitkreuz, C., Gaupp, R., Schneider, J.W., Stemmerik, L., Geluk, M., Geißler, M., Kiersnowski, H., Glennie, K., Kabel, S., Jones N., 2010. Rotliegend. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 101-121. EAGE Publications b.v. (Houten).
  • 17. Gaupp, R., Matter, A., Platt, J., Ramseyer, K., Walzebuck, J., 1993. Diagenesis and fluid evo l ution of deeply burl ed Permian (Rotliegende) gas reservoirs, Northwest Germany. AAPG Bulletin, 77: 1111-1128.
  • 18. Glennie, K., 1990. Early Permlan - Rotliegend. In: Introduction to the Petroleum Geology of the North Sea (ed. K. Glennie): 120-152. Blackwell Scientific, Oxford.
  • 19. Gradstein, F.M., Ogg, J.G., Smith, A.G., eds., 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge.
  • 20. Hamilton, P.J., Kelley, S., Fallick, A.E., 1989. K-Ar dating of illite in hydrocarbon reservoirs. Clay Minerals, 24: 215-231.
  • 21. Haszeldine, R.S., Cavanagh, A.J., England, G.L., 2003. Effects of oil charge on illite dates and stopping quartz cement: calibration of basin models. Journal of Geochemical Exploration, 78-79: 373-376.
  • 22. Karnkowski, P.H., 1999. Origin and evolution of the Polish Rotliegend Basin. Polish Geological Institute Special Papers, 3: 1-93.
  • 23. Kiersnowski, H., 1997. Depositional development of the Polish Upper Rotliegend Basin and evol ution of its sediments source areas. Geological Quarterly, 41 (4): 433-456.
  • 24. Kiersnowski, H., 2013. Late Permian aeolian sand seas from the Polish Upper Rotliegend Basin in the context of palaeoclimatic periodicity. Geological Society Special Publications, 376: 431-456.
  • 25. Kiersnowski, H., Peryt, T.M., Buniak, A., Mikołajewski, Z., 2010a. From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela high, west Poland. Geological Journal, 44: 319-335.
  • 26. Kiersnowski, H., Buniak, A., Kuberska, M., Srokowska-Okońka, A. 2010b. Tight gas accumulations in Rotliegend sandstones of Poland (in Polish with English summary). Przegląd Geologiczny, 58: 335-346.
  • 27. Kotarba, M.J., Peryt, T.M., Kosakowski, P., Więcław, D., 2006. Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in south-west Poland. Marine and Petroleum Geology, 23: 371-386.
  • 28. Kozłowska, A., Poprawa, P., 2004. Diagenesis of the Carboniferous clastic sediments of the Mazowsze region and the northern Lublin region related to their burial and thermal history (in Polish with English summary). Przegląd Geologiczny, 52: 491-500.
  • 29. Lander, R.H., Bonnell, L.M., 2010. A model for fibrous illite nucleation and growth in sandstones. AAPG Bulletin, 94:1161-1187.
  • 30. Lee, M., Aronson, J.L., Savin, S.M., 1985. K/Ar dating of time of gas emplacement in Rotliegendes sandstone. AAPG Bulletin, 69: 1381-1385.
  • 31. Lee, M., Aronson, J.L., Savin, S.M., 1989. Timing and conditions of Permian Rotliegende sandstone diagenesis, southern North Sea: K/Ar and oxygen isotopic data. AAPG Bul le tin, 73: 195-215.
  • 32. Liewig, N., Clauer, N., 2000. K-Ar dating of varied microtextural illite in Permlan gas reservoirs, northern Germany. Clay Minerals, 35: 271-281.
  • 33. Maliszewska, A., Kuberska, M., 2009. Isotopic investigations of diagenetic illite of Rotliegend sandstones from the Wielkopolska and Western Pomerania regions (in Polish with English summary). Przegląd Geologiczny, 57: 322-327.
  • 34. Menning, M., Alekseev, A.S., Chuvashov, B.I., Davydov, V.l., Devuyst, F.-X., Forke, H.C., Grunt, T.A., Hance, L., Heckel, P.H., Izokh, N.G., Jin, Y.-G., Jones, P.J., Kotlyar, G.V., Kozur, H.W., Nemyrovska, T.I., Schneider, J., Wang, X.-D., Weddige, K., Weyer, D., Work, D.M., 2006. Global time scale and regional stratigraphic reference scales of Cenlral and West Europa, Tethys, South China, and North America as used in the Devonian-Carboniferous-Permian Correlation Chart 2003 (DCP 2003). Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 318-372.
  • 35. Meunier, A., Velde, B., Zalba, P., 2004. Illite K-Ar Dating and crystal growth processes in diagenetic environments: a critical review. Terra Nova, 16: 296-304.
  • 36. Meyer, M., Brockamp, O., Clauer, N., Renk, A., Zuther, M., 2000. Furtherevidence for a Jurassic mineralizing event in central Europe: K-Ar dating of hydrothermal alteration and fluid inclusion systematics in wall rocks of the Käfersteige fluorite vein deposit in the northern Black Forest, Germany. Mineralium Deposita, 35: 754-761.
  • 37. Michalik, M., 2001. Diagenesis of the Weissliegend sandstones in the south-western margin of the Polish Rotliegend Basin. Prace Mineralogiczne, 91: 1-171.
  • 38. Mossmann, J.R., Clauer, N., Liewig, N., 1992. Dating thermal anomalies in sedimentary basins: The diagenetic history of clay minerals in the Triassic sandstones of the Paris basin, France. Clay Minerals, 27: 211-226.
  • 39. Nadeau, P.H., 1998. An experimental study of the effects of diagenetic clay minerals on reservoir sands. Clays and Clay Minerals, 46: 18-26.
  • 40. Odin, G.S. (and 35 collaborators), 1982. Interlaboratory standards for dating purposes. In: Numerical Dating in Stratigraphy. Part 1 (ed. G.S. Odin): 123-148. John Wiley and Sons, Chichester, England.
  • 41. Peaver, D.R., 1999. Illite and hydrocarbon exploration. Proceedings of the National Academy of Science, USA, 96: 3440-3446.
  • 42. Peryt, T.M., Durakiewicz, T., Kotarba, M.J., Oszczepalski, S., Peryt, D., 2012. Carbon isotope stratigraphy of the basal Zechstein (Lopingian) strata in Northern Poland. Geological Quarterly, 56 (2): 285-298.
  • 43. Platt, J.D., 1993. Controls on clay mineral distribution and chemistry in the Early Permian Rotliegend of Germany. Clay Minerals, 28: 393-416.
  • 44. Pletsch, T., Appel, J., Botor, D., Clayton, C., Duin, E., Faber, E., Górecki, W., Kombrink, H., Kosakowski, P., 2010. Petroleum generation and migration. In: Petroleum Geological Atlas of the Southern Permlan Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 225-253. EAGE Publications b.v., Houten.
  • 45. Pollastro, R.M., 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41: 119-133.
  • 46. Protas, A., Hałas, S., Wójtowicz, A., 2006. K-Ar dating of illite from Rotliegend rocks of the Polish Lowland area (in Polish). In: Abstract book of the 9th Polish Scientific Session “Datowanie Minerałów i Skał”, Gdańsk, 54-56.
  • 47. Robinson, A.G., Coleman, M.L., Gluyas, J.G., 1993. The age of illite cement growth, Village Fields area, Southern North Sea: Evidence from K-Ar ages and 18O/16O ratios. AAPG Bulletin, 77: 68-80.
  • 48. Schwarzer, D., Littke, R., 2007. Petroleum generation and migration in the 'Tight Gas' area of the German Rotliegend natural gas play: a basin modeling study. Petroleum Geoscience, 13: 37-62.
  • 49. Symons, D.T.A., Kawasaki, K., Walther, S., Borg, G., 2011. Paleomagnetism of the Cu-Zn-Pb-bearing Kupferschiefer black shale (Upper Permian) at Sangerhausen, Germany. Mineralium Deposita, 46: 137-152.
  • 50. Środoń, J., 1984. X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals, 32: 337-349.
  • 51. Środoń, J., 2007. Illitization of smectite and history of sedimentary basins. Proceedings of the 11 th EUROCLAY Conference, Aveiro, Portugal, 74-82.
  • 52. Środoń, J., Eberl, D.D., Drits, V.A., 2000. Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism. Clays and Clay Minerals, 48: 446-458.
  • 53. Środoń, J., Clauer, N., Eberl, D.D., 2002. Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling. American Mineralogist, 87: 1528-1535.
  • 54. Środoń, J., Clauer, N., Banaś, M., Wójtowicz, A., 2006. K-Ar evidence for a Mesozoic thermal event superimposed on burial diagenesis of the Upper Silesia Coal Basin. Clay Minerals, 41: 669-690.
  • 55. Wilkinson, M., Haszeldine, R.S., 2002. Fibrous illite in oilfield sandstones - A nucleation kinetic theory of growth. Terra Nova, 14: 56-60.
  • 56. Wilson, M.J., Wilson, L., Patey, I., 2014. The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights. Clay Minerals, 49: 147-164.
  • 57. Ziegler, K., 2006. Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Minerals, 41: 355-393.
  • 58. Ziegler, K., Sellwood, B.W., Fallick, A.E., 1994. Radiogenic and stable isotope evidence for age and origin of authigenic illites in the Rotliegend, southern North Sea. Clay Minerals, 29: 555-565.
  • 59. Zwingmann, H., Clauer, N., Gaupp, R., 1998. Timing of fluid-flow in a sandstone reservoir of the north German Rotliegend (Permian) by K-Ar dating of related hydrothermal illite. Geological Society Special Publications, 144: 91-106.
  • 60. Zwingmann, H., Clauer, N., Gaupp, R., 1999. Structure-related geochemical (REE) and isotopic (K-Ar, Rb-Sr, 18O) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany). Geochimica et Cosmochimica Acta, 63: 2805-2823.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eab399d5-43bb-494e-a4f7-4cd39ea623f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.