PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified input-to-output and control-to-output transfer functions of a non-ideal buck converter working in discontinuous conduction mode

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Small-signal models of a buck converter working in the discontinuous conduction mode that are available in the literature usually can be divided into those which contain a single pole and refer to non-ideal converters and those that describe ideal converters and contain two poles. Even though the models are noticeably different they have been validated through simulations and measurements, which suggests both of them are correct. The purpose of this paper is to provide a comprehensive comparison of the existing models with transient simulations done in OrCAD software and through measurements, to show that both of the mentioned models are true for a specific set of converter parameters, and to propose a two-pole, control-to-output and input-to-output transfer functions of a non-ideal buck converter, that can be used in any buck converter working in discontinuous conduction mode.
Rocznik
Strony
1025--1045
Opis fizyczny
Bibliogr. 28 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Department of Electronics and Computer Science, Koszalin University of Technology, Śniadeckich 2 str., 75-453 Koszalin, Poland
Bibliografia
  • [1] Kalson S., Kar S.R., Comparison of Buck Converter Control Methods, 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, pp. 1–8 (2022), DOI: 10.1109/ CONIT55038.2022.9847851.
  • [2] Marey A., Bhaskar M.S., Almakhles D., Mostafa H., Analytical Solution for Transient Reactive Elements for DC–DC Converter Circuits, Electronics, vol. 11, no. 19, 3121, pp. 1–19 (2022), DOI: 10.3390/electronics11193121.
  • [3] Khan M.U., Murtaza A.F., Noman A.M., Sher H.A., Zafar M., State-Space Modeling, Design, and Analysis of the DC–DC Converters for PV Application: A Review, Sustainability, vol. 16, no. 1, 202 pp. 1–20 (2024), DOI: 10.3390/su16010202.
  • [4] Middlebrook R.D., Cuk S., A General Unified Approach to Modelling Switching-Converter Power Stages, IEEE Power Electronics Specialists Conference Cleveland, OH, pp. 73–86 (1976), DOI: 10.1109/PESC.1976.7072895.
  • [5] Sun J., Mitchell D.M., Greuel M.F., Krein P.T., Bass R.M., Averaged Modelling of PWM Converters Operating in Discontinuous Conduction Mode, IEEE Transactions on Power Electronics, vol. 16, no. 4, pp. 482–492 (2001), DOI: 10.1109/63.931052.
  • [6] Davoudi A., Jatskevich J., Rybel T.S., Numerical state-space average-value modelling of PWM DC–DC converters operating in DCM and CCM, IEEE Trans. Power Electron, vol. 21, no. 4, pp. 1003–1012 (2006), DOI: 10.1109/TPEL.2006.876848.
  • [7] Usman Iftikhar M., Lefranc P., Sadarnac D., Karimi C., Theoretical and Experimental Investigation of Averaged Modelling of Non-ideal PWM DC–DC Converters Operating in DCM, IEEE Power Electronics Specialists Conference (PESC), pp. 2257–2263 (2008), DOI: 10.1109/PESC.2008.4592277.
  • [8] Vorperian V., Simplified Analysis of PWM Converters using Model of PWM Switch Part I: Continuous Conduction Mode, IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 490–496 (1990), DOI: 10.1109/7.106126.
  • [9] Vorperian V., Simplified analysis of PWM converters using the model of the PWM switch Part II: Discontinuous Conduction Mode, IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 497–505 (1990), DOI: 10.1109/7.106127.
  • [10] Czarkowski D., Kazimierczuk M.K., Energy-conservation approach to modelling PWM DC–DC converters, IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 3, pp. 1059–1063 (1993), DOI: 10.1109/7.220955.
  • [11] Janke W., Averaged models of pulse-modulated DC–DC power converters. Part II. Models based on the separation of variables, Archives of Electrical Engineering, vol. 61, no. 4, pp. 633–654 (2012), DOI: 10.2478/v10171-012-0046-7.
  • [12] Davoudi A., Jatskevich J., Realization of Parasitics in State-Space Average-Value Modelling of PWM DC–DC Converters, IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 1142–1147 (2006), DOI: 10.1109/TPEL.2006.879048.
  • [13] Biolkova V., Kolka Z., Biolek D., State-Space Averaging (SSA) Revisited: On the Accuracy of SSA-Based Line-To-Output Frequency Responses of Switched DC–DC Converters, WSEAS Transactions on Circuits and Systems, vol. 9, no. 2, pp. 81–90 (2010).
  • [14] Jha V., Rai P., State Space Averaged Modelling of Basic Converter Topologies, VSRD International Journal of Electrical, Electronics & Communication Engineering, vol. 2, no. 8, pp. 566–575 (2012).
  • [15] Priewasser R., Unterrieer C., Marsili S., Huemer M., Modelling, Control, and Implementation of DC–DC Converters for Variable Frequency Operation, IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 287–301 (2014), DOI: 10.1109/TPEL.2013.2248751.
  • [16] Hassan M.S., Elbaset A.A., Small-Signal MATLAB/Simulink Model of DC–DC Buck Converter using State-Space Averaging Method, 17th International Middle East Power Systems Conference, Mansoura University, Egypt, pp. 1–8 (2015), DOI: 10.1007/978-3-319-47464-9_5.
  • [17] Modabbernia M.R., The State Space Average Model of Buck-Boost Switching Regulator Including all of The System Uncertainties, International Journal on Computer Science and Engineering (IJCSE), vol. 5, no. 2, pp. 120–132 (2013).
  • [18] Abdelgawad H., Sood V., Average Model of Boost Converter, including Parasitics, operating in Discontinuous Conduction Mode (DCM), International Journal on Power Engineering and Energy (IJPEE), vol. 7, no. 2, pp. 636–646 (2016).
  • [19] Mishra S.K., Design-oriented analysis of modern active droop-controlled power supplies, IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3704–3708 (2009), DOI: 10.1109/TIE.2009.2025289.
  • [20] González I., Sánchez-Squella A., Langarica-Cordoba D., Yanine-Misleh F., Ramirez V., A PI + Sliding Mode Controller Based on the Discontinuous Conduction Mode for an Unidirectional Buck–Boost Converter with Electric Vehicle Applications, Energies, vol. 14, 6785 (2021), DOI: 10.3390/en14206785.
  • [21] Janke W., Impulsowe przetwornice napi˛ecia stałego, ISBN 978-83-7365-341-2, Wydawnictwo Uczelniane Politechniki Koszalińskiej (in Polish), Koszalin (2014).
  • [22] Middlebrook R.D., Cuk S., A General Unified Approach to Modelling Switching-Converter Power Stages, IEEE Power Electronics Specialists Conference Cleveland, OH, pp. 73–86 (1976), DOI: 10.1109/PESC.1976.7072895.
  • [23] Rim C.T., Joung G.B., Cho G.H., Practical Switch Based State-Space Modelling of DC–DC Converters with All Parasitics, IEEE Transactions on Power Electronics, vol. 6, no. 4, pp. 611–617 (1991), DOI: 10.1109/63.97759.
  • [24] Walczak M., Modelowanie i badania wybranych impulsowych przetwornic napięcia stałego, pracujących w trybie nieciągłego przewodzenia (DCM), Phd Thesis (in Polish), Department of Electronics and Computer Science, Technical University of Technology in Koszalin, Koszalin (2019).
  • [25] Erickson R.W., Maksimović D., Fundamentals of power electronics, Second Edition, ISBN 0-7923- 7270-0, sixth printing (2004).
  • [26] Mehta V., Malik P., Comparison between Asynchronous and Synchronous Buck Converter Topology, International Journal of Applied Engineering Research, vol. 7, no. 11, pp. 1–4 (2012).
  • [27] Janke W., Walczak M., Influence of output conductance on characteristic frequencies of switch mode BUCK and BOOST converter, Archives of Electrical Engineering, vol. 66, no. 1, pp. 165–178 (2017), DOI: 10.1515/aee-2017-0012.
  • [28] Walczak M., Methods of DC/DC converter transfer function measurements, based on data acquired in the time domain, Metrology and Measurement Systems, vol. 4, pp. 661–671 (2019), DOI: 10.24425/mms.2019.130569.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eab06be0-6f55-479e-aa41-5e0f0ecad10e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.