Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
CO2 Capture Ready Process, as a part of Carbon Capture and Storage (CCS) technology, is a response to international political pressure and the priority of the European Commission to reduce anthropogenic CO2 emissions since it is connected with concerns regarding global warming. This is currently considered as an option for lessing CO2 emissions into the atmosphere. Many laboratory experiments, as well as pilot projects, have been carried out using different capture systems, but until now no experience from the one-to-one size operational installation has been gained. The energy industry must meet several challenges associated with the start-up of the new full-scale project. This paper investigates the problems that can occur while linking a new technology like the CO2 Capture Ready Process to a working fossil fuel power plant. A Hazard and Operability study (HAZOP) has been used, as it is a structured and systematic examination of a planned or existing process or operation, in order to identify and evaluate problems that may represent risks to personnel or equipment. A case study of a post-combustion CO2 capture system with an aqueous monoethanolamine as a solvent is presented, as it is the most likely system to be used in Polish power plants. Basic problems in the analysis as well as the parameters that should be considered to determine vulnerabilities of the process were successfully identified. Gaining experience about the installation’s behaviour while connected to the existing equipment of any power plant is critical for future CCS projects.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
18--23
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Department of Industrial Risk Assessment, Central Mining Institute (Katowice, Poland)
autor
- Department of Industrial Risk Assessment, Central Mining Institute (Katowice, Poland)
autor
- Central Mining Institute (Katowice, Poland)
autor
- Central Mining Institute (Katowice, Poland)
Bibliografia
- 1. Abu-Zahra M.R.M., Niederer J.P.M., Feron P.H.M., Versteeg G.F. (2007): CO2 capture from power plants: Part II. A parametric study of the economical performance based on mono-ethanolamine. International Journal of Greenhouse Gas Control, 1(2), 135–142. DOI: http://dx.doi.org/10.1016/S1750-5836(07)00032-1
- 2. Amann, J.-M.G., Bouallou C. (2009): CO2 capture from power stations running with natural gas (NGCC) and pulverized coal (PC): Assessment of a new chemical solvent based on aqueous solutions of N-methyldiethanolamine + triethylene tetramine. Energy Procedia, 1(1), 909-916. DOI: http://dx.doi.org/10.1016/j.egypro.2009.01.121
- 3. BSI 61882 (2001). STANDARD. Hazard and operability studies (HAZOP studies) – Application guide: IEC.
- 4. Davidson R.M. (2007): Post-combustion carbon capture from coal fired plants – solvent scrubbing. Vol. CCC/125, pp. 58: IEA Clean Coal Centre.
- 5. Global CCS Institute (2013): The Global Status of CCS: 2013 Melbourne, Australia, (pp. 204).
- 6. Global CCS Report (2012): CO2 Capture Technologies. Post Combustion Capture (PCC). Australia: The Global Carbon Capture and Storage Institute http://www.globalccsinstitute.com.
- 7. Goff G.S., Rochelle G.T. (2003): Oxidative degradation of aqueous monoethanolamine in CO2 capture. In: International Test Network for CO2 Capture: report on 5th workshop. Vol. Report PH4/22, pp. 202–222. USA: IEA Greenhouse Gas R&D Programme.
- 8. Goff G.S., Rochelle G.T. (2004): Monoethanolamine Degradation: O2 Mass Transfer Effects under CO2 Capture Conditions. Industrial & Engineering Chemistry Research Vol. 43(20), pp. 6400-6408. DOI: 10.1021/ie0400245
- 9. Harun N., Nittaya T., Douglas P.L., Croiset E., Ricardez-Sandoval L.A. (2012). Dynamic simulation of MEA absorption process for CO2 capture from power plants. International Journal of Greenhouse Gas Control Vol. 10(0), pp. 295–309. DOI: http://dx.doi.org/10.1016/j.ijggc.2012.06.017.
- 10. IEAGHG (2012): CO2 Capture at Gas Fired Power Plants. Vol. 2012/08: The International Energy Agency Greenhouse Gas R&D Programme. http://www.ieaghg.org.
- 11. IPCC (2005): IPCC Special Report on Carbon Dioxide Capture and Storage: Prepared by Working Group III of the Intergovernmental Panel on Climate Change. B. Metz, O. Davidson, H.C. de Coninck, M. Loos, and L.A. Meyer (eds.). IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, USA, 442 pp. Vol. 2.
- 12. IRGC (2009): Power plant CO2 capture technologies. Risks and risk governance deficits (Concept Note). International Risk Governance Council. http://www.irgc.org.
- 13. ISO/IEC 31010 (2010): STANDARD. Risk management – Risk assessment techniques. Geneva: ISO/IEC.
- 14. Johnson D.W., Reddy S., Brown J.H. (2009): Commercially Available CO2 Capture Technology. Power. Retrieved from POWER website: http://www.powermag.com/commercially-available-co2-capture-technology/
- 15. Kittel J., Pasquier D., Ropital F., Boudou C., Bonneau A. (2006): Corrosion experiments for CO2 solvents. Paper presented at the 8th International Conference on Greenhouse Gas Control Technologies.
- 16. Kletz T.A. (1999): Hazop and Hazan – Identifying and Assessing Chemical Industry Hazards. Rugby, UK, Institution of Chemical Engineers.
- 17. Macdonald D. (2004): Practical hazops, trips and alarms: Newnes.
- 18. Notz R., Mangalapally H.P., Hasse H. (2012): Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. International Journal of Greenhouse Gas Control, Vol. 6(0), pp. 84–112. DOI: http://dx.doi.org/10.1016/j.ijggc.2011.11.004.
- 19. OSHA 1910.119 (1992): STANDARD. Process safety management of highly hazardous chemicals.
- 20. PN-N-18002: 2011 System zarządzania bezpieczeństwem i higieną pracy. Ogólne wytyczne do oceny ryzyka zawodowego.
- 21. Rao A.B., Rubin E.S., Berkenpas M.B. (2004): An Integrated Modelling Framework for Carbon Management Technologies. Volume 1 – Technical Documentation: Amine-Based CO2 Capture and Storage Systems for Fossil Fuel Power Plant. Pittsburgh, Pennsylvania: Carnegie Mellon University.
- 22. Reddy S., Gilmartin J. (2008): Fluor’s Econamine FG PlusSM Technology for Post-Combustion CO2 Capture. Paper presented at the GPA Gas Treatment Conference, Amsterdam, The Netherlands.
- 23. Sanpasertparnich T., Idem R., Bolea I., deMontigny D., Tontiwachwuthikul P. (2010): Integration of post-combustion capture and storage into a pulverized coal-fired power plant. International Journal of Greenhouse Gas Control Vol. 4(3), pp. 499–510. DOI: http://dx.doi.org/10.1016/j.ijggc.2009.12.005.
- 24. Sønderby T.L., Carlsen K.B., Fosbøl P.L., Kiørboe L.G., von Solms N. (2013): A new pilot absorber for CO2 capture from flue gases: Measuring and modelling capture with MEA solution. International Journal of Greenhouse Gas Control Vol. 12(0), pp. 181–192. DOI: http://dx.doi.org/10.1016/j.ijggc.2012.10.010.
- 25. Tenaska (2012): Final Front-End Engineering and Design Study Report. Report to the Global CCS Institute. Retrieved from http://cdn.globalccsinstitute.com.
- 26. Yu C.-H., Huang C.-H., Tan C.-S. (2012): A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. Vol. 12, pp. 745–769.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaae4e78-4190-45a5-9ab9-f32fd93d12f9