Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to the specific operation and complex structure of the energy harvesting system, comprising a tri-stable nonlinear vibration energy harvester and a step-up converter, its performance can hardly be represented by a family of curves. For this reason, this paper presents its performance maps determined experimentally. Various converter parameters and loading resistances are used to assess the influence of excitation acceleration on output voltage and power. This study reveals that the system achieves a maximum power of 30.25 mW and a maximum output voltage of 5.32 V at an excitation acceleration of 10 m/s2 under optimal conditions. The analysis identifies operating regions restricted by the converter parameters where the system attains a minimum applicable voltage between 1.8 and 3.3 V alongside the acceptable output power. This makes it appropriate for powering wireless measurement systems and MEMS devices. The results reveal the need to adjust the converter settings to real-world scenarios adaptively.
Czasopismo
Rocznik
Tom
Strony
409--424
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, ul. Prószkowska 76
autor
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, ul. Prószkowska 76
autor
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, ul. Prószkowska 76
Bibliografia
- [1] Wang W., Li B., Wang J., Fang B., Li Z., Liu S., Wei R., Harnessing energy from hand-shaking vibration for electronics through a magnetic rolling pendulum bistable energy harvester, Energy Conversion and Management, vol. 310, no. 1, 118466 (2024), DOI: 10.1016/j.enconman.2024.118466.
- [2] Lo Monaco M., Russo C., SomaÌ A., Numerical and experimental performance study of two-degrees-of-freedom electromagnetic energy harvesters, Energy Conversion and Management: X, vol. 18, no. 1, 100348 (2023), DOI: 10.1016/j.ecmx.2023.100348.
- [3] Maamer B., Jaziri N., Hadj Said M., Tounsi F., High-displacement electret-based energy harvesting system for powering leadless pacemakers from heartbeats, Archives of Electrical Engineering, vol. 72, no. 1, pp. 229–238 (2023), DOI: 10.24425/aee.2023.143699.
- [4] Ostrowski M., Błachowski B., Bocheński M., Piernikarski D., Filipek P., Janicki W., Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 68, no. 6, pp. 1373–1383 (2020), DOI: 10.24425/bpasts.2020.135384.
- [5] Mitura A., Kecik K., Modeling and energy recovery from a system with two pseudo-levitating magnets, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 70, no. 4, 141721 (2022), DOI: 10.24425/bpasts.2022.141721.
- [6] Li X., Huang K., Li Z., Xiang J., Huang Z., Mao H., Cao Y., Investigation of the influence of additional magnets positions on four-magnet bi-stable piezoelectric energy harvester, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 70, no. 1, 140151 (2022), DOI: 10.24425/ bpasts.2022.140151.
- [7] Jiang Q., Yu C., Zhou Y., Zhao Z., Gao Q., Sun B., Modeling and analysis of beam-spring magnetically coupled bistable energy harvester for broadband vibration energy harvesting, Journal of Sound and Vibration, vol. 579, no. 1, 118373 (2024), DOI: 10.1016/j.jsv.2024.118373.
- [8] Zeng Z., Ren B., Xu Q., Lin D., Di W., Luo H., Wang D., Excellent performances of energy harvester using cantilever driving double-clamped 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 plates and symmetric middle-stops, Applied Physics Letters, vol. 107, no. 17, 173502 (2015), DOI: 10.1063/1.4934700.
- [9] Zhang J., Zhi Y., Yang K., Hu N., Peng Y., Wang B., Internal resonance characteristics of a bistable electromagnetic energy harvester for performance enhancement, Mechanical Systems and Signal Processing, vol. 209, no. 1, 111136 (2024), DOI: 10.1016/j.ymssp.2024.111136.
- [10] Thainiramit P., Yingyong P., Isarakorn D., Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters, Sensors, vol. 20, no. 20, 5828 (2020), DOI: 10.3390/s20205828.
- [11] Li X., Yurchenko D., Li R., Feng X., Yan B., Yang K., Performance and dynamics of a novel bistable vibration energy harvester with appended nonlinear elastic boundary, Mechanical Systems and Signal Processing, vol. 185, no. 1, 109787 (2023), DOI: 10.1016/j.ymssp.2022.109787.
- [12] Zhou S., Cao J., Inman D.J., Lin J., Liu S., Wang Z., Broadband Tristable Energy Harvester: Modeling and Experiment Verification, Appl. Energy, vol. 133, pp. 33–39 (2014), DOI: 10.1016/ j.apenergy.2014.07.077.
- [13] Zhou S., Zuo L., Nonlinear Dynamic Analysis of Asymmetric Tristable Energy Harvesters for Enhanced Energy Harvesting, Commun. Nonlinear Sci. Numer. Simul., vol. 61, pp. 271–284 (2018), DOI: 10.1016/j.cnsns.2018.02.017.
- [14] Litak G., Margielewicz J., Gąska D., Wolszczak P., Zhou S., Multiple Solutions of the Tristable Energy Harvester, Energies, vol. 14, 1284 (2021), DOI: 10.3390/en14051284.
- [15] Xu J., Leng Y., Sun F., Su X., Chen X., Modeling and Performance Evaluation of a Bi-Stable Electromagnetic Energy Harvester with Tri-Magnet Levitation Structure, Sensors Actuators A Phys., vol. 346, 113828 (2022), DOI: 10.1016/j.sna.2022.113828.
- [16] Kashiwao T., Izadgoshasb I., Lim Y.Y., Deguchi M., Optimization of rectifier circuits for a vibration energy harvesting system using a macro-fiber composite piezoelectric element, Microelectronics Journal, vol. 54, pp. 109–115 (2016), DOI: 10.1016/j.mejo.2016.05.013.
- [17] Clemente C.S., Iannone I., Loschiavo V.P., Davino D., Design and Optimization of a Boost Interface for Magnetostrictive Energy Harvesting, Applied Sciences, vol. 13, no. 3, 1606 (2023), DOI: 10.3390/app13031606.
- [18] Potocny M., Kovac M., Arbet D., Sovcik M., Nagy L., Stopjakova V., Ravasz R., Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications, Sensors, vol. 21, no. 17, 5721 (2021), DOI: 10.3390/s21175721.
- [19] Yang Z., Zhang Y., Li Z., Zhang Z., Fu L., Kan J., Design and characteristic analysis of a highperformance deformable piezoelectric wind energy harvester based on coupled vibrations, Sustainable Materials and Technologies, vol. 42 (2024), DOI: 10.1016/j.susmat.2024.e01134.
- [20] Sutikno T., Subrata A.C., Pau G., Jusoh A., Ishaque K., Maximum power point tracking techniques for low-cost solar photovoltaic applications, Archives of Electrical Engineering, vol. 72, no. 2, pp. 299–322 (2023), DOI: 10.24425/aee.2023.145410.
- [21] Dayal R., Parsa L., A New Single Stage AC–DC Converter for Low Voltage Electromagnetic Energy Harvesting, 2010 IEEE Energy Convers. Congr. Expo. ECCE 2010 - Proc., pp. 4447–4452 (2010), DOI: 10.1109/ECCE.2010.5618446.
- [22] Mitcheson P.D., Green T.C., Yeatman E.M., Power Processing Circuits for Electromagnetic, Electrostatic and Piezoelectric Inertial Energy Scavengers, Microsyst. Technol., vol. 13, pp. 1629–1635 (2007), DOI: 10.1007/s00542-006-0339-0.
- [23] Cao X., Chiang W.J., King Y.C., Lee Y.K., Electromagnetic Energy Harvesting Circuit with Feedforward and Feedback Dc-Dc PWM Boost Converter for Vibration Power Generator System, IEEE Trans. Power Electron., vol. 22, pp. 679–685 (2007), DOI: 10.1109/TPEL.2006.890009.
- [24] Lefeuvre E., Audigier D., Richard C., Guyomar D., Buck-Boost Converter for Sensorless Power Optimization of Piezoelectric Energy Harvester, IEEE Trans. Power Electron., vol. 22, pp. 2018–2025 (2007), DOI: 10.1109/TPEL.2007.904230.
- [25] Tang Y., Khaligh A., A Multiinput Bridgeless Resonant AC–DC Converter for Electromagnetic Energy Harvesting, IEEE Trans. Power Electron., vol. 31, pp. 2254–2263 (2013), DOI: 10.1109/TPEL.2015. 2426700.
- [26] Wang H., Tang Y., Khaligh A., A Bridgeless Boost Rectifier for Low-Voltage Energy Harvesting Applications, IEEE Trans. Power Electron., vol. 28, pp. 5206–5214 (2013), DOI: 10.1109/TPEL.2013.2242903.
- [27] Kwon D., Rincon-Mora G.A., A rectifier-free piezoelectric energy harvester circuit, Proc. IEEE International Symp. Circuits Syst., Taipei, Taiwan, pp. 1085–1088 (2009), DOI: 10.1109/ISCAS.2009.5117948.
- [28] Jagieła M., Kulik M., Wideband Electromagnetic Converter of Mechanical Vibrations Energy into Electrical Energy (in Polish), Patent Office of the Republic of Poland, No. Pat. 239301 (2017).
- [29] Kulik M., Jagieła M., Łukaniszyn M., Surrogacy-based maximization of the output power of a lowvoltage vibration energy harvesting device, Applied Sciences, vol. 10, no. 7, 2484 (2020), DOI: 10.3390/APP10072484.
- [30] Kulik M., Górecki K., Jagieła M., Impact of scale factor on performance of miniature DC power source based on wideband vibration energy converter, Przegląd Elektrotechniczny, vol. 98, no. 8, pp. 185–188 (2022), DOI: 10.15199/48.2022.08.34.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaaa7e88-341b-4956-8786-8b6f3ef4f840
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.