PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Climatic signals in tree-ring width and stable isotopes composition of Pinus sylvestris L. Growing in the industrialized area nearby Kędzierzyn-Koźle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Conference Proceedings of the 12th International Conference “Methods of Absolute Chronology” May 11-13th, 2016, Gliwice-Paniówki, Poland.
Języki publikacji
EN
Abstrakty
EN
The main aims of these studies were dendrochronological and mass spectrometric analysis of the impact of climate on tree rings width and stable isotopes composition in pine (Pinus sylvestris L.). The conifers were growing in the vicinity of chemical and nitrogen factories in Kędzierzyn-Koźle (Poland) in the period of time from 1920s to 2012 AD. The combined usage of tree ring width and isotopic composition data provides historic records of the environment changes. These data allows identifying the behavior adaptation of pine growing under pollution stress to climate changes. The incremental rhythm of the studied pine populations was not identical, probably due to their different sensitivities to some climatic factors. This study evidences that the isotopic records in tree-rings α-cellulose may be sensitive bio-indicators of the way that the components of air and water may be changed by the trees in response to the climate changes and anthropogenic effects. The water use efficiency may be strongly correlated with variability of the surface temperature that may be due to increase of CO2 emission.
Czasopismo
Rocznik
Strony
240--255
Opis fizyczny
Bibliogr. 102 poz., rys.
Twórcy
autor
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
  • Department of Forest Protection, Entomology and Forest Climatology, University of Agriculture in Krakow, Al. 29Listopada 46, 31-425 Kraków, Poland
Bibliografia
  • 1. Andersson E, 1965. Cone and seed studies in Norway spruce (Picea abies(L.) Karst). Studia Forestalia Suecica 23: 214pp.
  • 2. Barbour MM, Walcroft AS and Farquhar GD, 2002. Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinusradiata. Plant, Cell and Environment 25: 1483–1499.
  • 3. Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Cotrufo FM, Boettger T, Haupt M, Friedrich M and Waterhouse JS, 2014. Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring cellulose of silver fir (Abies alba Mill.) influenced by background SO2 in Franconia (Germany, central Europe).Environmental Pollution185: 281–294.
  • 4. Bigler Ch, Bräker OU, Bugmann H, Dobbertin M and Rigling A, 2006. Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems 9: 330–343.
  • 5. Boden TA, Marland G and Andres RJ, 2016. Global, Regional and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.
  • 6. Boettger T, Haupt M, Friedrich M and Waterhouse JS, 2014. Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring cellulose of silver fir (Abies alba Mill.) influenced by background SO2in Franconia (Germany, Central Europe).Environmental Pollution 1: 281–294.
  • 7. Buchmann N, Brooks JR and Ehleringer JR, 2002. Predicting daytime carbon isotope ratios of atmospheric CO2within forest canopies. Functional Ecology 16(1): 49–57.
  • 8. Burk RL and Stuiver M, 1981. Oxygen isotope ratios in trees reflect mean annual temperature and humidity. Science 211: 1417–1419.
  • 9. Carrer M and Urbinati C, 2004. Age-dependent tree-ring growth response to climate in Larix deciduaand Pinus cembra.Ecology 85: 730–740.
  • 10. Cedro A and Lamentowicz M, 2011. Contrasting responses to environmental changes by pine (Pinus sylvestrisL.) growing on peat and mineral soil: An example from a Polish Baltic bog. Dendrochronologia 29: 211–217.
  • 11. Chałupka W, Giertych M and Królikowski Z, 1976. The effect of cone crops on growth in Scot pine on tree diameter increment. Arboretum Kórnickie 21: 361–366.
  • 12. Cinnirella S, Magnani F, Saracino A and Borghetti M, 2002. Response of a mature Pinus laricioplantation to a three-year restriction of water supply: structural and functional acclimation to drought. Tree Physiology 22: 21–30.
  • 13. Comstock JP and Ehleringer JR, 1992. Correlating genetic variation in carbon isotopic composition with complex climatic gradients. Proceedings of the National Academy of Science 89: 7747–7751.
  • 14. Craig H, 1954. Carbon-13 in plantsand the relationship between carbon-13and carbon-14 variations in nature. JournalofGeology 62: 115–149.
  • 15. Crecente-Campo F, Soares P, Tomé M and Diéguez-Aranda U, 2010. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. Forest Ecology and Management 260: 1965–1974.
  • 16. Danek M, 2007. The influence of industry on scots pine stands in the south-eastern part of the Silesia-Kraków Upland (Poland) on the basis of dendrochronological analysis. Water, Air and Soil Pollution18: 265–277.
  • 17. Dauskane I, Brumelis G and Elferts D, 2011. Effects of climate and extreme radial growth of Scots pine growing on bogs in Latvia. Estonian Journal of Ecology60(3): 236–248.
  • 18. DeVries W, Klap JM and Erisman JW, 2000. Effects of environmental stress on forest crown condition in Europe. Part I: hypotheses and approach to the study. Water, Air and Soil Pollution 119: 317–333.
  • 19. Dongmann G, Nurnberg HW, Forstel H and Wagener K, 1974. On the enrichment of H2 18O in leaves of transpiring plants.Radiation, Environment and Biophysiology. 11:41–52.
  • 20. Douglass AE, 1920. Evidence of climate effects in the annual rings of trees. Ecology 1: 24–32.
  • 21. Ehleringer JR, 1990. Correlations between carbon isotope discrimination and leaf conductance to water vapor in common beans. Plant Physiology 93: 1422–1425.
  • 22. Ehleringer JR, Hall AE and Farquhar GD, 1993. (Eds.), Stable Isotope and Plant Carbon–Water Relations. Academic Press, New York, USA: 555 pp.
  • 23. Ehrelinger J and Vogel J, 1993. Historical aspects of stable isotopes in plant carbon and water relations. In: Ehleringer JR, Hall AE and Farquhar GD, (eds).,Stable isotopes and plant carbon–water relations. New York: Academic Press: 9–19.
  • 24. Eis S, Garman EH and Bell LF, 1965. Relation between cone production and diameter increment of Douglas fir (Pseudotsugamenziesii(Mirb.) Franco, grand fir (Abies grandis(Dougl.) Lindl.) and western white pine (Pinus monticolaDougl.). Canadian Journal of Botany 43: 1553–1559.
  • 25. Elling W, DittmarCh, Pfaffelmoser K and Rotzer T, 2009. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies albaMill.) in Southern Germany. Forest Ecology and Management 257(4): 1175–1187.
  • 26. Epstein S and Yapp C, 1977. Isotope tree thermometers. Nature 266: 477–478.
  • 27. Ermich K, 1959. Badania nad sezonowym przebiegiem przyrostu grubości pnia u Pinus silvestrisL. i Quercus roburL. (The research on seasonal course of diameter growth P. silvestrisand Q. robur). Acta Societatis Botanicorum Poloniae 28(1): 15–63 (in Polish).
  • 28. Farquhar GD and Lloyd L, 1993. Carbon and oxygen isotope effects in the exchange of carbon dioxide between plants and the atmosphere. In: Ehleringer JR, Hall AE and Farquhar GD, (eds). Stable isotopes and plant carbon–water relations. New York, Academic Press:47–70.
  • 29. Ferrio J, Voltas J and Araus J, 2003. Use of carbon isotope composition in monitoring environmental changes.Management of Environmental Quality 14: 82–98
  • 30. Field CB, Jackson RB and Mooney HA, 1995. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant, Cell and Environment, 18: 1214–1225.
  • 31. Fober H, 1976. Relation between climatic factors and Scots pine (Pinussylvestris) cone crops in Poland. Arboretum Kórnickie21: 367–374.
  • 32. Friedrichs DA, Neuwirth B, Winiger M and Löffler J, 2009. Methodologically induced differences in oak site classifications in a homogeneous tree–ring network. Dendrochronologia 27: 21–30.
  • 33. Fritts HC, 1976. Tree Rings and Climate. Academic Press, London: 567pp.
  • 34. Gagen M, Finsinger W, Wagner-Cremer F, McCarroll D, Loader N, Robertson I, Jalkanen R, Young G, and Kirchhefer A, 2011. Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring d13C ratios. Global Change Biology 17: 1064–1072.
  • 35. Gray J and Thompson P, 1976. Climatic information from 18O/16O ratios of cellulose in tree rings. Nature 262: 481–482.
  • 36. Green J, 1963. Wood cellulose. In: Whistler RL, (eds.), Methods in Carbohydrate Chemistry 3. Academic Press, New York: 9–21.
  • 37. Gruber A, Strobi S, Veit B and Oberhuber W, 2010. Impact of drought on the temporal dynamics of wood formation inPinus sylvestris. Tree Physiology 30(4): 490–501, .
  • 38. Hejnowicz A, 1982. Budowa i rozwój wegetatywnych pąków sosny zwyczajnej Pinus sylvestrisL. (Structure and development of Scots pine vegetative bud). Instytut Dendrologii PAN, Kórnik: 97pp. (in Polish).
  • 39. Helama S, Mielikäinen K, Timonen M, Herva H, Tuomenvirta H and Veneäläinen A, 2013. Regional climatic signals in Scots pine growth with insights into snow and soil associations. Dendrobiology 70: 27–34.
  • 40. Hereş AM, Martínez-Vilalta J and López BC, 2012. Growth patterns in relation to drought-induced mortality at two Scots pine (Pinus sylvestrisL.) sites in NE Iberian Peninsula. Trees 26(2): 621–630.
  • 41. Herguido E, Granda E, Benavides R, García-Cervigón AI, Camarero JJ and Valladares F, 2016. Contrasting growth and mortality responses to climate warming of two pine species in a continental Mediterranean ecosystem. Forest Ecology and Management363: 149–158.
  • 42. Holmes RL and Lough JM, 1999. RESPO - Response and correlation function. Laboratory of Tree-Ring Research, Univ. of Arizona, Tucson.
  • 43. Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
  • 44. IPCC, 2005. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Eds B. Metz, O. Davidson, H.C. de Coninck, M. Loos, and L.A. Meyer. Cambridge, Cambridge University Press, s. 442.
  • 45. Irvine J, Perks MP, Magnani F and Grace J, 1998. The response of Pinus sylvestristo drought: stomatal control of transpiration and hydraulic conductance. Tree Physiology 18: 393–402.
  • 46. Juknys R, Augustaitis A, Vencloviené J, Kliučius A, Vitas A, Bartkevičius E and Jurkonis N, 2014. Dynamic response of tree growth to changing environmental pollution. European Journal of Forest Research 133: 713–724, .
  • 47. Keeling RF, Piper SC, Bollenbacher AF and Walker SJ, 2010. Monthly atmospheric 13C/12C isotopic ratios for 11 SIO stations. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.
  • 48. Kienast F, 1985. Tree ring analysis, forest damage and air pollution in the Swiss Rhone Valley. Land use Policy 2: 74–77.
  • 49. Krąpiec M and Szychowska-Krąpiec E, 2001. Tree–ring estimation of the effect of industrial pollution on pine (Pinussylvestris) and fir (Abies alba) in the Ojców National Park (Southern Poland). Nature Conservation 58: 33–42.
  • 50. Lindholm M, Meriläinen J, Timonen M, Vanninen P and Eronen M, 1997. Effects of climate on the growth of Scots pine in the Saimaa Lake District, South-Eastern Finland, in the southern part ofthe boreal forest belt. Dendrochronologia 15: 151–168.
  • 51. Lindholm M, Timonen M and Meriläinen J, 1996. Extracting midsummer temperatures from ring-width chronologies of living pines at the northern forest limit in Fennoscandia. Dendrochronologia 14: 99–113.
  • 52. Lührte von A, 1991. Dendroökologische Untersuchungen an Kiefern und Eichen in den standnahen Berliner Forsten (Dendroecological studies of pine and oak trees in the stand near Berlin forests). Landschaftsentwicklung und Umweltforschung. Schriftenreihe des Fachbereichs Landschaftsentwicklung der TU Berlin: 186pp. (in German).
  • 53. Major JE and Johnsen KH, 2001. Shoot water relations of mature black spruce families displaying a genotype × environment interaction in growth rate. III. Diurnal patterns as influenced by vapour pressure deficit and internal water status. Tree Physiolgy 21: 579–587.
  • 54. Malik I, Danek M, Marchwińska-Wyrwal E, Danek T, Wistuba M and Krąpiec M, 2012. Scots pine (PinussylvestrisL.) growth suppression and adverse effects on human health due to air pollution in the Upper Silesian Industrial District (USID), Southern Poland. Water, Air and Soil Pollution 223: 3345–3364.
  • 55. Marqués L, Camarero JJ, Gazol A and Zavala MA, 2016. Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. Forest Ecology and Management 381(1): 157–167.
  • 56. Martin B, Bytnerowicz A and Thorstenson YR, 1988. Effects of air pollutants on the composition of stable carbon isotopes, δ13C, of leaves and wood, and on leaf injury. Plant Physiology 88: 218–223.
  • 57. McCarroll D and Loader NJ, 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23: 771–801.
  • 58. McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young G, Jalkanen R, Kirchhefer A and Waterhouse JS, 2009. Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochimica et Cosmochimica Acta 73(6):1539–1547.
  • 59. Morgan JA, Mosier AR, Milchunas DG, LeCain DR, Nelson JA, 2004. CO2 enhances productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecological Applications14: 208–219.
  • 60. Morison JIL, 1993. Response of plants to CO2 under water limited conditions. Vegetatio104–105:193–209.
  • 61. NASA, 2016. Web site:
  • 62. NOAA, 2016. Web site: https://www.esrl.noaa.gov/gmd/ccgg/trends/, Accessed 2016 May.
  • 63. Parn H and Mandre M, 2011. Dendrochronological analysis of the growth and growth–climate relationships of conifers in the region of alkaline dust deposition. Forest Ecology and Management 262(2): 88–94.
  • 64. Pazdur A, Kuc T, Pawełczyk S, PiotrowskaN, Sensuła BM and Różański K, 2013. Carbon Isotope Composition of Atmospheric Carbon Dioxide in Southern Poland: Imprint of Anthropogenic CO2 Emissions in Regional Biosphere.Radiocarbon 55(2–3): 848–864.
  • 65. Pazdur A, Nakamura T, Pawełczyk S, Pawlyta J, Piotrowska N, Rakowski A, Sensuła B and Szczepanek M, 2007. Carbon isotopes in tree rings: climate and human activities in the last 400 years. Radiocarbon 49(2): 1133–1143.
  • 66. Pensa M, Salminen H and Jalkanen R, 2005. A 250-year-long height-increment chronology for Pinussylvestrisat the northern coniferous timberline: A novel tool for reconstructing past summer temperatures? Dendrochronologia 22: 75–81.
  • 67. Pichler P and Oberhuber W, 2007. Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. Forest Ecology and Management 242: 688–699.
  • 68. Piovesan G, Biondi F, Di Filippo A, Alessandrini A and Maugeri M, 2008. Drought-driven growth reduction in old beech (Fagus sylvaticaL.) forests of the central Apennines, Italy. Global Change Biology 14: 1265–1281.
  • 69. Richter K, Eckstein D and Holmes RL, 1991. The dendrochronological signal of pine trees (Pinus spp.) in Spain. Tree-Ring Bulletin 51: 1–13.
  • 70. Rinne KT, Loader NJ, Switsur VR, Treydte KS and WaterhouseJS, 2010. Investigating the influence of sulphur dioxide (SO2) on the stable isotope ratios (δ13C and δ18O) of tree rings. Geochimica et Cosmochimica Acta 74: 2327–2339.
  • 71. Roden J, Lin G, Ehleringer J, 2000. A mechanistic model for the interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochimica et Cosmochimica Acta 64: 21–35.
  • 72. Saurer M, Aellen K and Siegwolf R, 1997. Correlating δ13C and δ18O in cellulose of trees. Plant, Cell and Environment 20: 1543–1550, .
  • 73. Saurer M and Siegwolf RTW, 2007. Human impacts on tree-ring growth reconstructed from stable isotopes. In: Dawson TE and Siegwolf RTW, eds., Stable isotopes as indicators of ecological change terrestrial ecology series. Elsevier: Amsterdam: 49–62.
  • 74. Saurer M, Spahni R, Frank DC, Joos F, Leuenberger M, Loader NJ, McCarroll D, Gagen M, Poulter B, Siegwolf RW, Andreu-Hayles L, Boettger T, Linan ID, Fairchild IJ, Friedrich M, Gutierrez S, Haupt M, Hilasvuori E, Heinrich I, Helle G, Grudd H, Jalkanen R, Levanic T, Linderholm HW, Robertson I, Sonninen E, Treydte K, Waterhouse JS, Woodley EJ, Wynn PM and Young GHF, 2014. Spatial variability and temporal trends in water-use efficiency of European forests. Global Change Biology 20: 3700–3712.
  • 75. Savard MM, 2010. Tree-ring stable isotopes and historical perspectives on pollution – an overview. Environmental Pollution 158: 2007–2013.
  • 76. Scheidegger Y, Saurer M, Bahn M and Siegwolf R, 2000. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia125: 350–357.
  • 77. Schiegl WE, 1974. Climatic significance of deuterium abundance in growth rings of Picea. Nature 251: 582–584.
  • 78. Schober R, 1951. Zum jahreszeitlischen Ablauf des sekundären Dickenwachstums (For seasonal flow of secondary growth). Allgemeine Forst- und Jagdzeitung 122: 81–96 (in Germany).
  • 79. Schweingruber FH, 1986. Abrupt growthchanges in conifers. IAWA Bulletin 7(4): 277–283.
  • 80. Schweingruber FH, 1996. Tree Rings and Environment. Dendroecology. Swiss Federal Institute for Forest, Snow and Landscape Research, and Paul Haupt Verlag: 609pp.
  • 81. Sensuła B, 2016a. δ13C and water use efficiency in the glucose of annual pine tree-rings as ecological indicators of the forests in the most industrialized part of Poland. Water, Air, and Soil Pollution 227(2): 68.
  • 82. Sensuła B, 2016b. The Impact of Climate, Sulfur Dioxide, and Industrial Dust on δ18O and δ13C in Glucose from Pine Tree Rings Growing in an Industrialized Area in the Southern Part of Poland. Water, Air, and Soil Pollution 227(4): 106.
  • 83. Sensuła BM, Pazdur A, Bickerton J and Derrick PJ, 2011a. Probing palaeoclimatology through quantitation by mass spectrometry of the products of enzyme hydrolysis of α-cellulose. Cellulose 18(2): 461–468.
  • 84. Sensuła B, 2015. Spatial and Short-Temporal Variability of δ13C and δ15N and Water-Use Efficiency in Pine Needles of the Three Forests Along the Most Industrialized Part of Poland. Water, Air, and Soil Pollution 226: 362.
  • 85. Sensuła B, Opała M, Wilczyński S and Pawełczyk S, 2015a. Long-and short-term incremental response of Pinus sylvestris L. from industrial area nearby steelworks in Silesian Upland, Poland. Dendrochronologia 36: 1–12.
  • 86. Sensuła B and Pazdur A, 2013a. Influence of climate change on carbon and oxygen isotope fractionation factors between glucose and α-cellulose of pine wood. Geochronometria 40(2): 145–152.
  • 87. Sensuła B and Pazdur A, 2013b. Stable carbon isotopes of glucose received from pine tree-rings as bioindicators of local industrial emission of CO2in Niepolomice Forest (1950–2000). Isotopes in Environmental and Health Studies 49(4): 532–541.
  • 88. Sensuła BM, Pazdur A and Marais MF, 2011b. First application of mass spectrometry and gas chromatography in investigation of α-cellulose hydrolysates: the influence of climate changes on glucose molecules in pine tree-rings. Rapid Communications in Mass Spectrometry 25(4): 489–494.
  • 89. Sensuła B, Wilczyński S, Monin L, Mohammed A, Pazdur A, Fagel N, 2017. Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories. Geochronometria 44: 226–239.
  • 90. Sensuła B, Wilczyński S and Opala M, 2015b. Tree growth and climate relationship: Dynamics of Scots pine (Pinussylvestris L.) growing in the near-source region of the combined heat and power plant during the development of the pro-ecological strategy in Poland. Water, Air, and Soil Pollution 226: 220.
  • 91. StatSoft, Inc, 2014. STATISTICA (data analysis software system), version 12. www.statsoft.com.
  • 92. Stips A, Macias D, Coughlan C, Garcia-Gorriz E and Liang XS, 2016. On the causal structure between CO2 and global temperature. Scientific Reports 6: 21691.
  • 93. Tuovinen M, 2005. Response of tree–ring width and density of Pinus sylvestristo climate beyond the continuous northern forest line in Finland. Dendrochronologia 22: 83–91.
  • 94. Vaganov EA, 1990. The tracheidogram method in tree-ring analysis and its application. In: Cook ER and Kairiukstis LA, eds., Methods of Dendrochronology. Kluwer Academic Publication. Dodrecht, Boston, London: 63–76.
  • 95. Wigley TML, Briffa KR and Jones PD, 1984. On the Average Value of Correlated Time Series. with Applications in Dendroclimatology and Hydrometeorology. Journal of Applied Meteorology and Climatology23: 201–213.
  • 96. Wilczyński S and Skrzyszewski J, 2003. Dendrochronology of Scots pine (Pinus sylvestrisL.) in the mountains of Poland.Journal of Forest Science49(3): 95–103.
  • 97. Wilczyński S, 2003. Modele klimat–przyrost radialny sosen z Tatr, Pienin i Ojcowa (Models of climate-radial growth of pines from Tatra, Pieniny and Ojców). Sylwan 147(12): 27–35 (in Polish).
  • 98. Wilczyński S, 2006. The variation of tree-ring widths of Scots pine (Pinus sylvestrisL.) affected by air pollution. European Journal of Forest Research 125: 213–219.
  • 99. Wilczyński S, 2013. Przyczyny krótkookresowych reakcji przyrostowych sosen z różnych siedlisk (Reasons for short-term incremental response pines from different habitats). Sylwan 157(9): 662–670 (in Polish).
  • 100. Wodzicki TJ and Zajączkowski S, 1983. Variation of seasonal cambial activity and xylem differentiation in a selected population of Pinus sylvestrisL. Folia Forestalia Polonica Series A25: 5–23.
  • 101. Yoder BJ, Ryan MG, Waring RH, Schoettle AW and Kaufmann MR, 1994. Evidence of reduced photosynthetic rates in old trees. Forest Science 40: 513–527.
  • 102. Yu G, Liu Y and Wang X, 2008. Age–dependent tree–ring growth responses to climate in Qilian juniper (Sabina przewalskiiKom.). Trees 22: 197–204.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaa910a8-1fbb-4d11-b506-2a80f17d148e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.