PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The thermographic signal reconstruction method: A powerful tool for the enhancement of transient thermographic images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Important progress occurred in pulse-stimulated thermography, in particular thanks to the TSR technique, a technique based on the decomposition of thermograms on a logarithmic polynomial basis and the use of the logarithmic derivatives to enhance the detection of defects in structures. Its fields of application begin to broaden to the characterization of transient internal heat sources in experimental mechanics and biomedicine. The TSR technique is presented, in particular the last developments leading to the production of a unique synthetic image. Two recent examples of applications in experimental mechanics and biomedicine, taken from literature, are described: in situ detection of damages in a composite material during mechanical tests and in vivo visualization of subcutaneous functional angioarchitecture in humans.
Twórcy
  • TREFLE Department, Institute of Mechanics and Engineering of Bordeaux, Bordeaux, France
autor
  • ONERA, Composite Materials and Structures Department, Châtillon, France
autor
  • ONERA, Composite Materials and Structures Department, Châtillon, France
autor
  • Department of Computer Science and Information Engineering, National Chung Cheng University, Taiwan, ROC
  • Infrared Imaging and Thermometry Unit, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
Bibliografia
  • [1] Spring R, Huff RH, Schwoegler M. Infrared thermography: a versatile nondestructive testing technique. Mater Eval 2011; 69: 934–42.
  • [2] Balageas DL. Defense and illustration of time-resolved thermography for NDE. Quant InfraRed Thermogr J 2012; 9: 5–38.
  • [3] Shepard SM, Lhota JR, Rubadeux BA, Wang D, Ahmed T. Reconstruction and enhancement of active thermographic image sequences. Opt Eng 2003; 42:1337–42.
  • [4] Shepard M. Thermography of composites. Mater Eval 2007; 65: 690–6.
  • [5] Balageas D, Roche J-M, Leroy F-H. Les images de coefficients de la méthode TSR (Thermographic Signal Reconstruction): un moyen simple et efficace de détecter et imager les défauts. Annual Conference Société Française de Thermique; 2013.
  • [6] Roche J-M, Leroy F-H, Balageas D. Images of TSR coefficients: a simple way for a rapid and efficient detection of defects. Mater Eval 2014;72(January (1)):73–82.
  • [7] Roche J-M, Balageas D. Detection and characterization of composite real-life damage by the TSR-polynomial coefficients RGB-projection technique. 12th International Conference on Quantitative InfraRed Thermography, Paper QIRT-2014-010; 2014. pp. 7–11.
  • [8] Rajic N. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos Struct 2002; 58: 521–8.
  • [9] Marinetti S, Grinzato E, Bison PG, Bozzi E, Chimenti M, Pieri G, et al. Statistical analysis of IR thermographic sequences by PCA. Infrared Phys Technol 2004;46:85–91.
  • [10] Maldague X, Marinetti S. Pulse phase infrared thermography. J Appl Phys 1996;79:2694–8.
  • [11] Madruga FJ, Ibarra-Castanedo C, Conde OM, López-Higuera JM, Maldague X. Infrared thermography processing based on higher-order statistics. NDT&E Int 2010;43:661–6.
  • [12] Dumoulin J, Ibos L, Marchetti M, Mazioud A. Detection of non emergent defects in asphalt pavement samples by long pulse and phase infrared thermography. Eur J Environ Civil Eng 2011;15:557–74.
  • [13] Roche J-M, Balageas D, Lamboul B, Bai G, Passilly F, Mavel A, et al. Passive and active thermography for in situ damage monitoring in woven composites during mechanical testing. The 39th Annual Review of Progress in Quantitative Nondestructive Evaluation; 2013. pp. 555–62.
  • [14] Roche J-M, Balageas D, Lapeyronnie B, Passilly F, Mavel A. Use of infrared thermography for in situ damage monitoring in woven composites. Photomechanics Conference 2013; 2013. pp. 27–9.
  • [15] Wu D, Hamann H, Salerno A, Busse G. Lock-in thermography for imaging of modulated flow in blood vessels. In Balageas D, Busse G, Carlomagno GM, editors, Proc. IIIrd Quantitative Infrared Thermography Conference (QIRT 96), 1996, Edizioni ETS, Pisa, Italy. pp. 343–7. Available from QIRT Open Archives, paper 1996-057: http://www.qirt.org/dynamique/index.php?idD=57.
  • [16] Bouzida N, Bendada AK, Piau JM, Akhloufi M, Maldague X. Using lock-in infrared thermography for the visualization of the hand vascular tree. Thermosense XXX. In: Vavilov PV, Burleigh DD, editors. Proc SPIE, vol. 6939. 2008. http://dx.doi.org/10.1117/12.778680. 69390O-1–69390O-12.
  • [17] Liu W-M, Meyer JM, Scully CG, Elster E, Gorbach AM. Observing temperature fluctuations in humans using infrared imaging. Quant InfraRed Thermogr J 2011;8:21–36.
  • [18] Liu W-M, Maivelett J, Kato GJ, Taylor VIJG, Yang W-C, Liu Y-C, et al. Reconstruction of thermographic signals to map perforator vessels in humans. Quant InfraRed Thermogr J 2012;9:123–33.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaa7d89e-c35a-4dc4-806f-f6123948ed5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.