PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Stress assessment of gear teeth in epicyclic gear train for radial sedimentation tank

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the strength evaluation of planetary gear teeth designed for a radial sedimentation tank drive. A novel type of gear drive, composed of a closed epicyclic gear train and an open gear train with internal cycloidal gear mesh is proposed. Contact stress and root stress in the planetary gear train were determined by the finite element method and according to ISO 6336. The influence of the mesh load factor at planet gears on stress values was also established. A comparison of the results followed. It was observed that the mesh load factor on satellites depends mainly on the way the satellites and central wheels are mounted, the positioning accuracy in the carrier and the accuracy of teeth. Subsequently, a material was selected for the particular design of planetary gear and the assumed load. The analysis of the obtained results allowed assuming that in case of gears in class 7 and the rigid mounting of satellites and central wheels, gears should be made of steel for carburizing and hardening. In case of flexible satellites or flexible couplings in the central wheels and gears in class 4, gears can be made of nitriding steel.
Słowa kluczowe
Rocznik
Strony
121--127
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology 35-959 Rzeszow, Al. Powstańców Warszawy 8, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology 35-959 Rzeszow, Al. Powstańców Warszawy 8, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology 35-959 Rzeszow, Al. Powstańców Warszawy 8, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology 35-959 Rzeszow, Al. Powstańców Warszawy 8, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology 35-959 Rzeszow, Al. Powstańców Warszawy 8, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology 35-959 Rzeszow, Al. Powstańców Warszawy 8, Poland
Bibliografia
  • 1. ANSI/AGMA 6123-C16 (2016), Design Manual for Enclosed Epicy-clic Gear Drives.
  • 2. Batsch M., Markowski T., Zubrzycki M. (2017), Mathematical model of internal pin gear mesh (in Polish), STAL Metale Nowe tech-nologie. Koła zębate - projektowanie, wytwarzanie, pomiary, ek-sploatacja, 13–16.
  • 3. Budzik G., Kozik B., Pacana J. (2013), Defining influence of load conditions on distribution and value of stresses in dual-power-path gear wheels applying FEM, Aircraft Engineering and Aerospace Technology, Vol. 85, No. 6, 453–459.
  • 4. Budzik G., Pacana J. (2008), Analysis of the correctness of the FEM solution depending on the type and number of finite elements used (in Polish), Acta Mechanica Slovaca, 3-A/2008, t. 12, Technical Uni-versity of Kosice, 327–332.
  • 5. Cooley C.G., Parker R.G. (2014) A review of planetary and epicyclic gear dynamics and vibrations research, Applied Mechanics Reviews, Vol. 66, No. 4, Article Number 040804
  • 6. Dadley D.W. (2002), Handbook of Practical Gear Design, CRC Press LLC.
  • 7. Fernandez del Rincon A., Viadero F., Iglesias M., García P., de-Juan A., Sancibrian R. (2013) A model for the study of meshing stiffness in spur gear transmissions, Mechanism and Machine Theo-ry, Vol. 61, 30–58, doi.org/10.1016/j.mechmachtheory.2012.10.008
  • 8. Iglesias M., Fernandez del Rincon A., de-Juan A., Garcia P., Diez-Ibarbia A., Viadero F. (2017) Planetary transmission load shar-ing: Manufacturing errors and system configuration study, Mecha-nism and Machine Theory, Vol. 111, 21–38, https://doi.org/10.1016/j.mechmachtheory.2016.12.010.
  • 9. ISO 6336-1 (2006), Calculation of load capacity of spur and helical gears — Part 1: Basic principles, introduction and general influence factors.
  • 10. ISO 6336-2 (2006), Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface durability (pitting).
  • 11. ISO 6336-3 (2006), Calculation of load capacity of spur and helical gears — Part 3: Calculation of tooth bending strength.
  • 12. Kopecki H., Witek L. (2000), Influence of the type and number of elements on the error and convergence of the FEM solution on the example of the stability analysis of a compressed member (in Polish). V Konferencja Naukowo-Techniczna, Military University of Technolo-gy, (WAT), IPPT PAN, Warsaw - Rynia.
  • 13. Ligata H., Kahraman A., Singh A. (2008), An experimental study of the influence of manufacturing errors on the planetary gear stresses and planet load sharing, Journal of Mechanical Design, Transactions of the ASME, Vol. 130, No. 4, 577–595.
  • 14. Markowski T., Budzik G., Pacana J. (2010), Criteria for selecting a numerical model for the strength calculations of a cylindrical gear with the FEM method (in Polish), Modelowanie Inżynierskie, Vol. 8, No. 39, 135–142.
  • 15. Marques P.M.T., Martins R.C., Seabra, J.H.O. (2016) Power loss and load distribution models including frictional effects for spur and helical gears, Mechanism and Machine Theory, Vol. 96, Part 1, 1–25, DOI: 10.1016/j.mechmachtheory.2015.09.005
  • 16. Marques P.M.T., Martins R.C., Seabra, J.H.O. (2017) Analytical load sharing and mesh stiffness model for spur/helical and inter-nal/external gears – Towards constant mesh stiffness gear design, Mechanism and Machine Theory, Vol. 113, 126–140, doi.org/10.1016/j.mechmachtheory.2017.03.007
  • 17. Parker R.G., Lin J. (2004) Mesh Phasing Relationships in Planetary and Epicyclic Gears, Journal of Mechanical Design, Vol. 126(2), 365–370, https://doi.org/10.1115/1.1667892
  • 18. Rusiński E., Czmochowski J., Smolnicki T. (2000), Advanced finite element method in load-bearing structures (in Polish), The Wrocław University of Technology Publishing House, Wrocław.
  • 19. Sánchez M.B., Pleguezuelos M., Pedrero J. I. (2019), Strength model for bending and pitting calculations of internal spur gears, Mechanism and Machine Theory, Vol. 133, 691–705, https://doi.org/10.1016/j.mechmachtheory.2018.12.016
  • 20. Singh A. (2005), Application of a System Level Model to Study the Planetary Load Sharing Behavior, Journal of Mechanical Design, Vol. 127, 469–476.
  • 21. Singh A. (2010), Load sharing behavior in epicyclic gears: Physical explanation and generalized formulation, Mechanism and Machine Theory, Vol. 45, 511–530.
  • 22. Tsai S.-J., Huang G.-L., Ye S.-Y. (2015) Gear meshing analysis of planetary gear sets with a floating sun gear, Mechanism and Ma-chine Theory, Vol. 84, 145–163,
  • https://doi.org/10.1016/j.mechmachtheory.2014.03.001
  • 23. Tsai S.-J., Ye S.-Y. (2018), A computerized approach for loaded tooth contact analysis of planetary gear drives considering relevant deformations, Mechanism and Machine Theory, Vol. 122, 252–278, https://doi.org/10.1016/j.mechmachtheory.2017.12.026
  • 24. Wiktor J. (2004), Analytical and numerical methods of analysis of geometric parameters, motion disturbances and strength of cylindri-cal gears (in Polish), The Rzeszów University of Technology Publish-ing House, Rzeszów.
Uwagi
1. Studies carried out as part of project “Designing an innovative type of a scraper with an integrated planetary drive for new or modernized sedimentation tanks,” No. POIR.01.01.01-00-0286/15-00 under Action 1.1 “R&D Projects of Businesses,” Sub-Action 1.1.1 “Industrial research and development work performed by businesses” POIR in 2015. Competition 1/1.1.1/2015 of the Intelligent Development Operation Programme 2014–2020 co-funded from the European Regional Development Fund.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaa7789c-216e-4b75-a95d-bb829c4cc89f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.