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A b s t r a c t . The aim of paper is to study the solution of 

the prob lem of nonlinear transverse vibrations of elastic elon-

gated body under the force of resistance in unbounded domain. 

Such problems have applications in various tech nical systems 

- vibration of pipelines, railways, long bridges, electric lines, 

optical fi bers. Unboundedness of the area creates more funda-

mental diffi culties in the study of the problem. For the consid-

ered models of nonlinear os ci llations have no ge ne ral analytical 

techniques for determining the dy na mic cha racteristics of the 

oscillatory process. Therefore it is sug ges ted to use qualitative 

methods of the theory of nonlinear boundary value problems 

to obtain correct problem solution conditions (existence and 

uniqueness of the solu tion). In the paper conditions of the cor-

rectness of the solu tion of mathematical model for these nonlin-

ear systems (suffi cient conditions of the existence and unique-

ness in the class of locally integrable functions) are obtained.

Methods of qualitative study of semi-infi nite cable vibra-

tions under the forces of resistance based on general principles 

of the theory of nonlinear boundary value problems - method of 

monotony and Galerkin method. Scientifi c novelty of the work 

lies in particular in the generalization of methods of studying 

nonlinear problems on a new class of oscillatory systems in 

unbounded domains, justifying the correctness of the solution 

with specifi ed mathematical model, which has practical appli-

cations in real engineering oscillatory systems.

The technique allows not only for proving the correctness 

of the model solution, but also has an opportunity in its study 

to apply various approximate methods. 

K e y  w o r d s : mathematical model, nonlinear vibrations, 

nonlinear boundary value problem, Galer kin method, method 

of monotony, unbounded domain.

INTRODUCTION.

OVERVIEW OF THE MAIN RESULTS

Problems of studying dynamic processes in nonlinear 

oscillatory systems describing the transverse (longitudi-

nal) vibrations with the movements of cargo by conveyor 

belt (cable) type are important problems of mechanics. 

Investigation of nonlinear oscillatory and wave phenom-

ena in elastic rod structures under the action of various 

perturbations (power, inertial and kinematic) is one of the 

classic problems of structural mechanics. Revitalization 

of theoretical research in this direction is due to not only 

logic of the foundations of deformed systems dynamics 

of, but also the interests of a wide variety of practical 

applications in the construction and engineering.

It should be noted, that the problem of studying of 

the infl uence of system parameters (such as speed of 

belt movement) on vibrations, suffi ciently investigated 

in the case of constant velocity and linear law of elastic 

material. Specifi ed is due to the fact that such situations 

are modeled by linear partial differential equations [4, 

11, 18]. Asymptotic methods of nonlinear mechanics 

allowed to explore a wide class of mechanical oscilla-

tion systems for the case of quasi-linear dependence of 

amplitude of oscillations from the resistance force [17, 

23]. In the case of non-linear law of elastic material, 

essentially nonlinear dependence of amplitude of vibra-

tions from the resistance forces and variable speed of 

belt (cable) movement, problem is associated with the 

principled mathematical diffi culties because there are 

no general analytical methods for solving this class of 

problems. Therefore, there is no general techniques of 

evaluation of amplitude - frequency characteristics of 

the oscillatory process. On the other hand, qualitative 

methods of general theory of nonlinear boundary value 

problems allow for a wide class of oscillatory systems to 

obtain correct solution results of the problem (existence, 

uniqueness and continuous dependence on the initial 

data). The above technique allows to substantiate the 

correctness of the model solution and allows in further 

investigation to use various approximate methods. Thus, 

the problem of qualitative research methods for nonlinear 

systems is relevant.

This article focuses on the qualitative study of math-

ematical models of nonlinear oscillations of semi-infi nite 
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cable under the action of nonlinear resistance forces. 

Similar problems arise in various technical applications 

such as vibrations of the pipelines on (nonlinear) elastic 

soil, railways, long bridges, tightly stretched electric 

lines, optical fi bers embedded in the nonlinear elastic 

body, etc. [5, 6, 10, 15, 16, 21, 22].

In case of essentially nonlinear dependence of the 

amplitude from resistance forces problem associated 

with the principled mathematical diffi culties even for the 

case of oscilatory model studies in a bounded domain. 

This problem is generally solved only for a very narrow 

class of problems. 

Unboundedness of domain creates additional fun-

damental problems. 

Particular problem for nonlinear wave equations in 

a form:

2 2
2

2 2
= ( , )

u u
u u f x t

t x

ρα β −∂ ∂
− +

∂ ∂
,  > 2,

,  - some functions (constants) in unbounded do-

mains was considered in [3, 1, 9, 7, 2, 27, 18, 15, 13, 20]. 

At the same time limitation of elliptic operator coeffi cients 

are assumed. The results of existence and uniqueness 

of the solution of problems in unbounded domains in 

these works are obtained under the assumption of certain 

behavior of solution, initial data and of the right side of 

the equation at the infi nity or without such assumptions. 

Currently qualitative results about the correctness of the 

solutions mentioned above mathematical models could 

be obtained only for a rather narrow class of problems 

in unbounded domains, because in unbounded domains 

we need to modify the methods of the general theory of 

nonlinear boundary value problems.

PROBLEM STATEMENT

The article presents qualitative research methodology 

of mathematical model for nonlinear oscillations of elastic 

semi-infi nite cable under condition of linear (variable 

by spatial variable) elastic law and nonlinear resistance 

force. In its simplest formulation model is described by 

the mixed problem for the equation:
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with initial conditions:
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1

( ,0)
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u x
u x

t

∂
=

∂
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and boundary conditions:

0( ,0) ( ),u x u x=  (4)

in unbounded domain Q = (0,+ ) × (0, T), 0 < T < + .

Further in this paper we denote Q
R,

 = (0, R) × (0, ), 

Q  = (0, + ) × (0, ) for arbitrary R > 0, (0, T]. We 

will use the following Sobolev space of functions:
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The generalized solution of the problem we will call 

a function that satisfi es conditions (1), (2), (4) and the 

integral identity:
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For arbitrary  (0, T] and for an arbitrary function 

with limited carrier such that:
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v
L Q
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Concerning the coeffi cients of the right side of the 

equation (1) and the initial data let’s assume the fulfi ll-

ment of following conditions.

(I) Function a(x) belongs to the space C([0,+ ),

a(x) a
0
, a

0
 = const > 0 for all x  ([0,+ ); |a(x)| M(1 + x )

for x  + , where M > 0, 
2

0 < 1
2

p

p
α

−
≤ − .

Remark. In the above relation is taken into account, 

that the modulus of elasticity can grow at suffi ciently large 

x very slow (slower than the linear law) or stays constant.

(II) Function g(x, ) - measurable by x and continu-

ous by  moreover for arbitrary , s R and almost all 

x  (0, + ) we will obtain:
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(III)
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( ), = 1.q
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p q

∈ +

(IV)
1 2

0 0, 1(0, ), (0, )loc locu H u L∈ +∞ ∈ +∞ .

The aim of proposed work is to study the problem 

(1) - (4) for second order nonlinear wave equation, which 

in particular includes the equation of forced oscillations 

of the rod in the medium of resistance [14, p. 234] and 

obtain conditions for the correctness of solution of the 

mathematical model - suffi cient conditions for exist-

ence and uniqueness of solution in the class of locally 

integrable functions.

The main result of this paper: if the mathematical 

model of oscillating process is described by problem 

(2) - (4) for equation (1), then under the conditions (I), 

(II), (III), 

(IV) exist unique generalized solution of problem 

(1) - (4) for which:

1
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∂
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∂
 (6)

METHODS OF OBTAINING RESULTS

Let u1, u2 - generalized solutions of problem (1) - (4) 

and problem that differs from (1) - (4) by the fact that in 

the right side of (1) force f is replaced by ( )q

locf L Q∈  re-

spectively. Then for arbitrary ,R,R
0
  such, that 0 < R

0
 < R,

 (0,T], we can obtain the following evaluation:
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where: 
2

>
2

p

p
β

−
 - arbitrary number; C

1
, C

2
, C

3
, C

4

- positive constants that depend only from p, .

Let’s explain the inequality (7). Let R > R0 > 0,

 (0,T] - arbitrary numbers. We defi ne the function 

as follows:
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
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Directly convince ourselves that the evaluation of 

function  holds:

   

Let u1, u2 - generalized solutions of problem (1) - (4) 

and problem (1) - (4), where in the right side of equation 

(1) function f is replaced by ( )q

locf L Q∈ . We set further 

w = u1 – u2 and follow the procedure of regularization 

described in [14 pp. 238 - 239]. Based on some calcula-

tions and transformations similar to those made in [14], 

after limit passage when l,k  one can get:

2 2

0

,

1 2

,

1 2

,

1 ( , ) ( , )
( )

2

( )

( , ) ( , )
, ,

( , ) ( , )
=

= ( ) .

R

Q
R

Q
R

Q
R

w x w x
a x dx

t x

w w
a x dxdt

x t x

u x t u x t
g x g x

t t

u x t u x t
dxdt

t t

w
f f dxdt

t

β

β

τ

τ

β

β

τ

τ τ
ϕ

φ

ϕ

ϕ

 ∂ ∂   + +    ∂ ∂     

∂ ∂ ∂
+ +

∂ ∂ ∂

    ∂ ∂
+ − ×     ∂ ∂    

 ∂ ∂
× − 

∂ ∂ 
∂

−
∂

∫

∫

∫

∫  (8)

Let’s estimate the integrals of equation (8) due to:
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where: 
1
,

2
 - arbitrary suffi ciently small positive 

constants, C
1
, C

2
, C

3
, C

4
 - some positive constants that 

depend on the p, . Note, that in the last evaluation we used 

Young inequality [8] and the properties of the  function. 

Lets estimate the following integrals from equation (8):
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where: constant C  > 0, and constant  >0 can be 

made an arbitrarily small.

Taking into account the above estimates and using 

them, we obtain:
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C
5
 – C

8
 - positive constants. From the last inequality 

easy to receive inequality (7).

Consider the next sequence of domains Qk = (0,k) × 

× (0,T), k = 1,2,… and respecti vely in each domain Qk

the problem:
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u
1
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ku  - narrowing of function u
1
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(0,k), 
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1 (0, )ku L k∈ , 21 1l im = 0
(0, )

k

Lk
u u

k→+∞
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Under the generalized solution of problem (9) - (12) 

we mean function uk, which satisfi es (9) (10), (12) and 

the integral identity similar to the identity (5), which is 

treated in Qk, where function v is chosen so that:
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Note that under the conditions of the theorem there 

exists a unique generalized solution of the problem (9) 

- (12) in Qk [14, p. 234].

Consider now the sequence of problems of the form 

(9) - (12) for k = 1, k = 2,…, uk = 0, when (x,t) Q\Q.

We will obtain a sequence of solutions of problem (1) 

- (4) in Q, which for convenience we denote again {uk}. 

Lets show that sequence {uk} is fundamental in space:
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to (8) we obtain:
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From inequality (13) by proper a choice of suffi ciently 

large R > 0:
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for any arbitrarily small  > 0. Thus, {uk} is fundamental 

sequence in space 
1

0,([0, ]; ( ))locC T H Ω , namely:

uk u strongly in 
1
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It is obvious that for function u, conditions (2) - (4) 

are satisfi ed. Thus, u is a generalized solution of problem 

(1) - (4) in the sense of the integral identity (5), for which 

inclusion performed (6) performed.

Uniqueness of the obtained solution follows from 

inequality (13) with R  + , if we consider two arbitrary 

solutions u1 and u2 of problem (1) - (4) and considering that:

1 2
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( ,0) ( ,0),

( ,0) ( ,0)
.

u x u x

u x u x

t t

=

∂ ∂
=

∂ ∂

Note that for problem (1) - (4) it is easy to obtain 

suffi cient conditions for the existence and uniqueness 

of periodic for the spatial variable generalized solution 

to problem (1) - (4).

Let conditions (I), (II), (III), (IV) are satisfi ed,  = 0 

and exist such number  > 0, that:

a) a(x + ) = a(x) for all x  (0,l);

b) f(x + ,t) = f(x,t) for nearly all (x,t) Q;

c) u
0
(x + ) = u

0
(x), u

1
(x + ) = u

1
(x) for nearly all 

x  (0,+ ).

Then problem (1) - (4) has a unique generalized so-

lution u, which is periodic function by variable x with 

period .

Really, since there is unique generalized solution of 

the problem (1) - (4) and function u(x + ,t), (x,t) Q also 

is a generalized solution of problem (1) - (4) (it is easily 

verifi ed), then from the uniqueness of the generalized 

solution immediately follows that u(x + ,t) = u(x,t) for 

nearly all (x,t) Q.

CONCLUSIONS

1. Firstly obtained correctness conditions for the solution 

in mathematical model for fl uctuations of semiun-

bounded rope under the infl uence of nonlinear resist-

ance force - suffi cient conditions for the existence 

and uniqueness of solution in the class of locally 

integrable functions.

2. The above technique allows substantiate the correct-

ness of the model also in the more complex case - the 

vibrations under the action of combined effects of 

nonlinear elastic foundation and resistance forces. 

This mathematical model is reduced to a qualitative 

analysis of the mixed problem in a bounded (in the 

case of a fi nite cable) or unbounded (as discussed in 

this article) domain for the equation:

2

2
( ) , , = ( , )

u u u
a x g x u f x t

x x tt

∂ ∂ ∂ ∂   
− +   ∂ ∂ ∂∂    

.

3. These qualitative results justify, particularly the 

possibility of applying for such problem Galerkin 

numerical method and provide an opportunity to 

apply various approximate methods in further in-

vestigations of the dynamic characteristics of the 

considered oscillation mathematical models solutions.
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