Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybridization of the lithium energy storage for an urban electric vehicle

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper discusses benefits of introducing an ultracapacitor (UC) bank into a battery electric vehicle (BEV) powertrain. The case of 12kWh LiFePO4 battery pack is studied quantitatively. Simulation results refer, inter alia, to three main scenarios: fresh cells, half-used battery cells, and half-used ultracapacitors and batteries. Thermal modeling is incorporated into the simulation. Data from real world are considered: various driving cycles recorded using GPS receiver (incl. elevation), discharge curves from battery manufacturer, and UC equivalent series resistance (ESR) variations due to cycling according to real data reported in papers. Cost, as well as gravimetric and volumetric issues are presented. The key decisions referring to an energy storage for BEV being currently designed within the frame of ECO-Mobility Project are highlighted.
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
  • [1] A. Fuhs, Hybrid Vehicles and the Future of Personal Transportation, CRC Press, London, 2009.
  • [2], “CERA (Cambridge Energy Research Associates) says peak oil theory is faulty”, EnergyBulletin, 2006.
  • [3] G. Piastoia, Electric and Hybrid Vehicles, Elsevier Science Publishers, Amsterdam, 2010.
  • [4] L. Fulton, Technology Roadmap: Electric and Plug-in HybridElectric Vehicles, International Energy Agency,, updated June 2011.
  • [5] K. Umezu, H. Noyama, “Air-conditioning system for electric vehicles (i-MiEV)”, SAE Automotive Refrigerant & System EfficiencySymposium 1, CD-ROM (2010).
  • [6] “From home to work, the average commute is 26.4 minutes”, OmniStats 3 (4), 1-4 (2003).
  • [7],text,98.html (accessed on 15.01.2011).
  • [8] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, “Graphenebased supercapacitor with an ultrahigh energy density”, NanoLetters 10 (12), 4863-4868 (2010).
  • [9] K. Bullis, “Ultracapacitors to boost the range of electric cars”, Technology Review 1, CD-ROM (2011).
  • [10] Low Cost Graphene Electrode Powered Supercapacitors forConsumer Devices and EVs, (accessed on December 2011).
  • [11] D.L. Chandler, “Research update: improving batteries’ energy storage”, MIT News 1, CD-ROM (2011).
  • [12] NanophosphateTM Lithium Ion Batteries, (accessed on December 2011).
  • [13] L. Niedzicki, “Characterization of new generation of electrolytes based on imidazole derivatives salts”, Ph.D. Dissertation, Warsaw University of Technology, Warszawa, 2010.
  • [14] A. Khaligh and Li Zhihao, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art”, IEEE Trans. on Vehicular Technology 59 (6), 2806-2814 (2010).
  • [15] S.M. Lukic, S.G. Wirasingha, F. Rodriguez, Jian Cao, and A. Emadi, “Power management of an ultracapacitor/battery hybrid energy storage system in an HEV”, IEEE Vehicle Powerand Propulsion Conf. 1, 1-6 (2006).
  • [16] A.M. Puscas, M.C. Carp, C.Z. Kertesz, P.N. Borza, and G. Coquery, “Thermal and voltage testing and characterization of supercapacitors and batteries”, IEEE 12th Int. Conf. on Optimizationof Electrical and Electronic Equipment 1, 125-132 (2010).
  • [17] T.P. Kohler, D. Buecherl, and H.-G. Herzog, “Investigation of control strategies for hybrid energy storage systems in hybrid electric vehicles”, IEEE Vehicle Power and Propulsion Conf. 1, 1687-1693 (2009).
  • [18] I. Aharon and A. Kuperman, “Design of semi-active batteryultracapacitor hybrids”, IEEE 26-th Convention of Electricaland Electronics Engineers in Israel 1, 593-597 (2010).
  • [19] A. Kuperman and I. Aharon, “Battery-ultracapacitor hybrids for pulsed current loads: a review”, Renewable and SustainableEnergy Reviews 15 (2), 981-992 (2011).
  • [20] M.B. Camara, H. Gualous, F. Gustin, and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles”, IEEE Trans.on Vehicular Technology 57 (5), 2721-2735 (2008).
  • [21] R.M. Miskiewicz and A.J. Moradewicz, “Contactless power interface for plug-in electric vehicles in V2G systems”, Bull. Pol. Ac.: Tech. 59 (4), 561-568 (2011).
  • [22] L. Gao, S. Liu, and R. A. Dougal, “Dynamic lithium-ion battery model for system simulation”, IEEE Trans. on Componentsand Packaging 25 (3), 495-505 (2002).
  • [23] M. A. Roscher, and D. U. Sauer, “Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries”, J. Power Sources 196 (1), 331-336 (2011).
  • [24] H.G. Schweiger, O. Obeidi, O. Komesker, A. Raschke, M. Schiemann, C. Zehner, M. Gehnen, M. Keller, and P. Birke, “Comparison of several methods for determining the internal resistance of Li-ion cells”, Sensors 10 (6), 5604-5625 (2010).
  • [25] M. Michalczuk, L.M. Grzesiak, and B. Ufnalski, “A lithium battery and ultracapacitor hybrid energy source for an urban electric vehicle”, Electrotechnical Review 88 (4B), 58-162 (2012).
  • [26], IGBT module datasheet SKM300GB-12T4 (accessed on 8.12.2011).
  • [27] (accessed on 8.12.2011).
  • [28], BC (BOOSTCAP) Series Datasheet (accessed on 8.12.2011).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.