PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustic Emission Parameters of Three Gorges Sandstone during Shear Failure

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an experimental investigation of sandstone samples from the Three Gorges during shear failure was conducted using acoustic emission (AE) and direct shear tests. The AE count rate, cumulative AE count, AE energy, and amplitude of the sandstone samples were determined. Then, the relationships among the AE signals and shearing behaviors of the samples were analyzed in order to detect micro-crack initiation and propagation and reflect shear failure. The results indicated that both the shear strength and displacement exhibited a logarithmic relationship with the displacement rate at peak levels of stress. In addition, the various characteristics of the AE signals were apparent in various situations. The AE signals corresponded with the shear stress under different displacement rates. As the displacement rate increased, the amount of accumulative damage to each specimen decreased, while the AE energy peaked earlier and more significantly. The cumulative AE count primarily increased during the post-peak period. Furthermore, the AE count rate and amplitude exhibited two peaks during the peak shear stress period due to crack coalescence and rock bridge breakage. These isolated cracks later formed larger fractures and eventually caused ruptures.
Czasopismo
Rocznik
Strony
2410--2429
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China
  • State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China
  • State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China
  • State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing, China
Bibliografia
  • Chang, S.H., and C.I. Lee (2004), Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission, Int. J. Rock Mech. Mining Sci. 41, 7, 1069-1086, DOI: 10.1016/ j.ijrmms.2004.04.006.
  • Goszczyńska, B., G. Świt, W. Trąmpczyński, A. Krampikowska, J. Tworzewska, and P. Tworzewski (2012), Experimental validation of concrete crack identification and location with acoustic emission method, Arch. Civil Mech. Eng. 12, 1, 23-28, DOI: 10.1016/j.acme.2012.03.004.
  • Havaej, M., A. Wolter, D. Stead, Z. Tuckey, L. Lorig, and E. Eberhardt (2013), Incorporating brittle fracture into three-dimensional modelling of rock slopes. In: Proc. Int. Symp. Slope Stab., Brisbane, Australia.
  • Katsuyama, K. (1996), Application of AE Techniques, Metallurgy Industry Press, Bejing.
  • Kawamato, T., and T. Saito (1974), The behaviour of rock like materials in some controlled strain rates. In: III Congress ISRM, Denver, USA, Vol. 2, 161- 166.
  • Kranz, R.L. (1979), Crack growth and development during creep of Barre granite, Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 16, 1, 23-35, DOI: 10.1016/0148-9062(79)90772-1.
  • Lajtai, E.Z., E.J.S. Duncan, and B.J. Carter (1991), The effect of strain rate on rock strength, Rock Mech. Rock Eng. 24, 2, 99-109, DOI: 10.1007/BF01032501.
  • Lavrov, A. (2001), Kaiser effect observation in brittle rock cyclically loaded with different loading rates, Mech. Mater. 33, 11, 669-677, DOI: 10.1016/ S0167-6636(01)00081-3.
  • Li, Y.H., J.P. Liu, X.D. Zhao, and Y.J. Yang (2010), Experimental studies of the change of spatial correlation length of acoustic emission events during rock fracture process, Int. J. Rock Mech. Min. Sci. 47, 8, 1254-1262, DOI: 10.1016/j.ijrmms.2010.08.002.
  • Lockner, D. (1993), The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min Sci. Geomech. Abstr. 30, 7, 883-899, DOI: 10.1016/ 0148-9062(93)90041-B.
  • Majewska, Z., and Z. Mortimer (2006), Chaotic behaviour of acoustic emission induced in hard coal by gas sorption-desorption, Acta Geophys. 54, 1, 50- 59, DOI: 10.2478/s11600-006-0005-z.
  • Moradian, Z.A., G. Ballivy, P. Rivard, C. Gravel, and B. Rousseau (2010), Evaluating damage during shear tests of rock joints using acoustic emissions, Int. J. Rock Mech. Min. Sci. 47, 4, 590-598, DOI: 10.1016/ j.ijrmms.2010.01.004.
  • Rao, M.V.M.S., and K. Kusunose (1995), Failure zone development in andesite as observed from acoustic emission locations and velocity changes, Phys. Earth Planet Int. 88, 2, 131-143, DOI: 10.1016/0031-9201(94)02967-G.
  • Ray, S.K., M. Sarkar, and T.N. Singh (1999), Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone, Int. J. Rock Mech. Min. Sci. 36, 4, 543-549.
  • Stock, G.M., S.J. Martel, B.D. Collins, and E.L. Harp (2012), Progressive failure of sheeted rock slopes: the 2009-2010 Rhombus Wall rock falls in Yosemite Valley, California, USA, Earth Surf. Proc. Landforms 37, 5, 546-561, DOI: 10.1002/esp.3192.
  • Taheri, A., and K. Tani (2010), Assessment of the stability of rock slopes by the slope stability rating classification system, Rock Mech. Rock Eng. 43, 3, 321-333, DOI: 10.1007/s00603-009-0050-4.
  • Xu, J., S. Li, Y. Tao, X. Tang, and X. Wu (2009), Acoustic emission characteristic during rock fatigue damage and failure, Proc. Earth Planet. Sci. 1, 1, 556- 559, DOI: 10.1016/j.proeps.2009.09.088.
  • Xu, J., S. Peng, G. Yin, H. Yang, and W. Wang (2011), Development of mesoshear test equipment for coal rock containing gas and its application, Chin. J. Rock Mech. Eng. 30, 4, 677-685.
  • Yang, S.Q., and H.W. Jing, and S.Y. Wang (2012), Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression, Rock Mech. Rock Eng. 45, 4, 583-606, DOI: 10.1007/s00603-011-0208-8.
  • Zhao, X., Y. Li, R. Yuan, T. Yang, J. Zhang, and J. Liu (2007), Study on crack dynamic propagation process of rock samples based on acoustic emission location, Chin. J. Rock Mech. Eng. 26, 5, 944-950.
  • Zhurkov, S.N. (1965), Kinetic concept of the strength of solids, Int. J. Fract. 4, 311- 323.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea9a9a12-8fdb-4b4d-813a-86824ba6a2e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.