Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims to explore a dual-purpose approach for environmental and construction challenges by investigating the adsorption of Iron (III) from produced water using almond shells. Also, it seeks to provide an innovative solution by evaluating the potential of the adsorbent and its subsequent use as a sustainable additive in concrete. Employing simulating contaminated solutions, the operating parameters studied were iron concentration, pH, agitation speed, initial iron ion concentration, almond shell dose, treatment time and temperature. The obtained outcomes exhibited that the highest adsorption capacity and the iron recovery from aqueous solutions were 20.376 mg·g-1 and 96.52%, respectively. The results also indicated that the process obeyed the Langmuir and the intra-particle diffusion models with a correlation coefficient of 0.9999, according to the isothermal and kinetic studies, respectively. Thermodynamically, the adsorption was favorable randomness, endothermic and spontaneous, and was of the chemical type according to the enthalpy value. FTIR examination showed that the almond shells before adsorption possessed a number of functional groups, while the SEM test showed that the adsorption medium suffered significant changes as a result of treatment with solutions contaminated with iron. The surface area of virgin almond shells was 7.7 m2·g-1 and adsorption led to the accumulation of iron ions and reduced this area to less than 0.75 m2·g-1 after the end of treatment. The remnant Fe+3-almond shells was tested to use as a reinforcing material for concrete mixture of (4:2:1). The results showed that 2.8 wt.% was the best ratio and the compressive strength increased by more than 206% and 195% for the 7- and 28-days tested concrete cubes, respectively.
Wydawca
Rocznik
Tom
Strony
353--378
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
autor
- Environmental Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
autor
- Chemical Engineering Department, College of Engineering, Mutah University, Al Karak, Jordan
autor
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
Bibliografia
- 1. Abbas F.S., Abdulkareem W.S., Abbas M.N. (2022a). Strength development of plain concrete slabs by the sustainability potential of lead-loaded rice husk (LLRH). Journal of Applied Engineering Science, 20, 1, 160–167. https://doi:10.5937/ jaes0-32253
- 2. Abbas M.N. (2015). Phosphorus removal from wastewater using rice husk and subsequent utilization of the waste residue. Desalination and Water Treatment, 55, 4, 970–977. https://doi.org/10.1080 /19443994.2014.922494
- 3. Abbas M.N., Abbas F.S. (2013a). Iraqi rice husk potency to eliminate toxic metals from aqueous solutions and utilization from process residues. Advances in Environmental Biology, 7(2), 308–319. https:// www.aensiweb.com/old/aeb/2013/308-319.pdf
- 4. Abbas M.N., Abbas F.S. (2013b). The predisposition of iraqi rice husk to remove heavy metals from aqueous solutions and capitalized from waste residue. Research Journal of Applied Sciences, Engineering and Technology, 6, 22, 4237–4246. https://www.maxwellsci.com/html/rjaset.6.3539.html
- 5. Abbas M.N., Abbas F.S. (2013c). the feasibility of rice husk to remove minerals from water by adsorption and avail from wastes. Research Journal of Applied Sciences, WSEAS Transactions on Environment and Development, 9(4), 301–313. http://www.wseas.org/multimedia/journals/environment/2013/145715-140.pdf
- 6. Abbas M.N., Abbas F.S. (2014). Application of rice husk to remove humic acid from aqueous solutions and profiting from waste leftover. WSEAS Transactions on Biology and Biomedicine, 11(9), 62–69. http://www.wseas.us/journal/pdf/biology/2014/ a025708-124.pdf
- 7. Abbas M.N., Alalwan H.A. (2019). Catalytic oxidative and adsorptive desulfurization of heavy naphtha fraction. Korean Journal of Chemical Engineering, 12(2), 283–288. http://doi.org/10.9713/ kcer.2019.57.2.283
- 8. Abbas M.N., Ali S.T., Abbas R.S. (2020). Rice husks as a biosorbent agent for Pb+2 ions from contaminated aqueous solutions: a review. Biochemical and Cellular Archives, 20(1), 1813–1820. https:// doi.org/10.35124/bca.2020.20.1.1813
- 9. Abbas M.N., Al-Hermizy S.M.M., Abudi Z.N., Ibrahim T.A. (2019a). Phenol biosorption from polluted aqueous solutions by Ulva lactuca alga using batch mode unit. Journal of Ecological Engineering, 20(6), 225–235. https://doi.org/10.12911/22998993/109460
- 10. Abbas M.N., Al-Madhhachi A.T., Esmael S.A. (2019b). Quantifying soil erodibility parameters due to wastewater chemicals. International Journal of Hydrology Science and Technology, 9(5), 550ľ568. http://doi.org/10.1504/IJHST.2019.10016884
- 11. Abbas M.N., Al-Tameemi I.M., Hasan M.B., Al- Madhhachi A.T. (2021). Chemical removal of cobalt and lithium in contaminated soils using promoted white eggshells with different catalysts. South African Journal of Chemical Engineering, 35, 23–32. https://doi.org/10.1016/j.sajce.2020.11.002
- 12. Abbas M.N., Ibrahim S.A. (2020). Catalytic and thermal desulfurization of light naphtha fraction. Journal of King Saud University - Engineering Sciences, 32(4), 229–235. https://doi.org/10.1016/j. jksues.2019.08.001
- 13. Abbas M.N., Ibrahim S.A., Abbas Z.N., Ibrahim T.A. 2022b. Eggshells as a Sustainable Source for Acetone Production. Journal of King Saud University - Engineering Sciences, 34(6), 381–387. https:// doi.org/10.1016/j.jksues.2021.01.005
- 14. Abbas M.N., Nussrat T.H. 2020. Statistical Analysis of Experimental Data for Adsorption Process of Cadmium by Watermelon Rinds in Continuous Packed Bed Column. International Journal of Innovation, Creativity and Change, 13(3), 124–138. https://www.ijicc.net/images/vol_13/Iss_3/13321_ Abbas_2020_E_R.pdf
- 15. Abd ali I.K., Ibrahim T.A., Farhan A.D., Abbas M.N. 2018. Study of the effect of pesticide 2,4-D on the histological structure of the lungs in the albino mice (Mus musculus). Journal of Pharmaceutical Sciences and Research, 10(6), 1418–1421. https:// www.jpsr.pharmainfo.in/Documents/Volumes/ vol10Issue06/jpsr10061822.pdf
- 16. Abd Ali I.K., Salman S.D., Ibrahim T.A., Abbas M.N. (2024). Study of the Teratogenic Effects of Antimony on Liver in the Adult Rabbit (Oryctolagus cuniculus). Advancements in Life Sciences, 11(2), 462–469. http://dx.doi.org/10.62940/als.v11i2.2773
- 17. Abd Al-Latif F.S., Ibrahim T.A., Abbas M.N. (2023). Revealing potential histological changes of deltamethrin exposure on testicular tissue in albino rabbits (Oryctolagus cuniculus). Advancements in Life Sciences, 10(4), 619–626. http://dx.doi.org/10.62940/als.v10i4.2323
- 18. Abdulkareem W.S., Aljumaily H.S.M., Mushatat H.A., Abbas M.N. (2023). Management of Agro- Waste by Using as an Additive to Concrete and Its Role in Reducing Cost Production: Impact of Compressive Strength as a Case Study. International Journal on “Technical and Physical Problems of Engineering” (IJTPE), 15(1), 62–67. http://www. iotpe.tabaelm.com/IJTPE/IJTPE-2023/IJTPE-Issue54-Vol15-No1-Mar2023/9-IJTPE-Issue54- Vol15-No1-Mar2023-pp62-67.pdf
- 19. Abdullah W.R., Alhamadani Y.A.J., Abass I.K., Abbas M.N. (2023). Study of chemical and physical parameters affected on purification of water from inorganic contaminants. Periodicals of Engineering and Natural Sciences, 11(2), 166–175. http://dx.doi.org/10.21533/pen.v11i2.3508
- 20. Al-Ali S.I.S., Abudi Z.N., Abbas M.N. (2023). Modelling and simulation for the use of natural waste to purified contaminated heavy metals. Journal of the Nigerian Society of Physical Sciences, 5(1), 1143. https://doi.org/10.46481/jnsps.2023.1143
- 21. Alalwan H.A., Abbas M.N., Abudi Z.N., Alminshid A.H. (2018). Adsorption of thallium ion (Tl+3) from aqueous solutions by rice husk in a fixed-bed column: Experiment and prediction of breakthrough curves. Environmental Technology and Innovation, 12, 1–13. https://doi.org/10.1016/j.eti.2018.07.001
- 22. Alalwan H.A., Abbas M.N., Alminshid A.H. (2020). Uptake of cyanide compounds from aqueous solutions by lemon peel with utilising the residue absorbents as rodenticide. Indian Chemical Engineer, 62(1), 40–51. https://doi.org/10.1080/00194506.2 019.1623091
- 23. Alalwan H.A., Mohammed M.M., Sultan A.J., Abbas M.N., Ibrahim T.A., Aljaafari H.A.S., Alminshid A.A. (2021). Adsorption of methyl green stain from aqueous solutions using non-conventional adsorbent media: Isothermal kinetic and thermodynamic studies. Bioresource Technology Reports, 14, 100680. https://doi.org/10.1016/j.biteb.2021.100680
- 24. Alhamd S.J., Abbas M.N., Al-Fatlawy H.J.J., Ibrahim T.A., Abbas Z.N. (2024b). Removal of phenol from oilfield produced water using non-conventional adsorbent medium by an eco-friendly approach. Karbala International Journal of Modern Science (KIJOMS), 10(2), 191–210. https://doi.org/10.33640/2405-609X.3350
- 25. Alhamd S.J., Abbas M.N., Manteghian M., Ibrahim T.A., Jarmondi K.D.S. (2024a). Treatment of oil refinery wastewater polluted by heavy metal ions via adsorption technique using non-valuable media: cadmium ions and buckthorn leaves as a study case. Karbala International Journal of Modern Science (KIJOMS), 10(1), 1–18. https://doi.org/10.33640/2405-609X.3334
- 26. Al-Hermizy S.M.M., Al-Ali S.I.S., Abdulwahab I.A., Abbas M.N. (2022). Elimination of zinc ions (Zn+2) from synthetic wastewater using lemon peels. Asian Journal of Water, Environment and Pollution, 19(5), 79–85. https://doi.org/10.3233/AJW220073
- 27. Ali G.A.A., Abbas M.N. (2020). Atomic spectroscopy technique employed to detect the heavy metals from iraqi waterbodies using natural bio-filter (Eichhornia crassipes) thera dejla as a case study. Systematic Reviews in Pharmacy, 11(9), 264–271. https://doi.org/10.31838/srp.2020.9.43
- 28. Ali G.A.A., Ibrahim S.A., Abbas M.N. (2021). Catalytic adsorptive of nickel metal from iraqi crude oil using non-conventional catalysts. Innovative Infrastructure Solutions, 6(7), 1–9. https:// doi.org/10.1007/s41062-020-00368-x
- 29. Ali S.A.K., Abudi Z.N., Abbas M.N., Alsaffar M.A., Ibrahim T.A. (2024). Synthesis of nano-silica particles using Eucalyptus globulus leaf extract and their innovative application as an adsorbent for malachite green dye, Russian Journal of Applied Chemistry, 97(1), 2–14. https://doi.org/10.1134/ S1070427224010099
- 30. Ali S.A.K., AL-Kaabi Z., Kasim M.N., Abbas M.N., Ibrahim T.A. (2023). Remediation of antimony from aqueous solutions by adsorption technique: isothermal, kinetic and thermodynamic studies. Indian Journal of Environmental Protection, 43(14), 1316–1325, (Conference 2023). https://www.e-ijep. co.in/43-14-1316-1325/
- 31. Ali S.A.K., Almhana N.M., Hussein A.A., Abbas M.N. (2020a). Purification of aqueous solutions from toxic metals using laboratory batch mode adsorption unit antimony (V) ions as a case study. Journal of Green Engineering (JGE), 10(11), 10662–10680.
- 32. Ali S.T., Qadir H.T., Moufak S.K., Al-Badri M.A.M., Abbas M.N. (2020b). a statistical study to determine the factors of vitamin D deficiency in men: the City of Baghdad as a model. Indian Journal of Forensic Medicine & Toxicology, 14(1), 691–696. https://doi.org/10.37506/ijfmt.v14i1.132
- 33. Ali S.T., Shahadha R.W., Abdulkareem W.S., Abbas M.N. (2024). Available low cost agro-waste as an efficient medium to eliminate heavy metal contamination using sustainable approach achieving zero residue level, Journal of Ecological Engineering, 25(10), 160–175. https://doi.org/10.12911/22998993/191945
- 34. Alminshid A.H., Abbas M.N., Alalwan H.A., Sultan A.J., Kadhome M.A. (2021). Aldol condensation reaction of acetone on MgO nanoparticles surface: An in-situ drift investigation. Molecular Catalysis, 501, 111333. https://doi.org/10.1016/j. mcat.2020.111333
- 35. Alsarayreh, A.A., Ibrahim, S.A., Alhamd S.J., Ibrahim T.A., Abbas M.N. (2024). Removal of selenium ions from contaminated aqueous solutions by adsorption using lemon peels as a non-conventional medium. Karbala International Journal of Modern Science (KIJOMS), 10(4), 511–531. https://doi.org/10.33640/2405-609X.3375
- 36. Alwan E.K., Hammoudi A.M., Abd I.K., Abd Alaa M.O., Abbas M.N. (2021). Synthesis of Cobalt Iron Oxide Doped by Chromium Using Sol-Gel Method and Application to Remove Malachite Green Dye. NeuroQuantology, 19(8), 32–41 http:// doi:10.14704/nq.2021.19.8.NQ21110
- 37. Bakker E.S., Van Donk E., Immers A.K. (2016). Lake restoration by in-lake iron addition: a synopsis of iron impact on aquatic organisms and shallow lake ecosystems. Aquatic Ecology, 50, 121–135. https://doi.org/10.1007/s10452-015-9552-1
- 38. Bayuo J., Rwiza M.J., Sillanpää M., Mtei K.M. (2023). Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents - a systematic review. RSC advances, 13(19), 13052– 13093. https://doi.org/10.1039/d3ra01660a
- 39. Ejaz U., Khan S.M., Khalid N., Ahmad Z., Jehangir S., Fatima Rizvi Z., Lho L.H., Han H., Raposo A. (2023). Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. Frontiers in plant science, 14, 1154571. https://doi.org/10.3389/ fpls.2023.1154571
- 40. Ghulam N.A., Abbas M.N., and Sachit D.E. (2020). Preparation of synthetic alumina from aluminium foil waste and investigation of its performance in the removal of RG-19 dye from its aqueous solution. Indian Chemical Engineer, 62(3), 301–313. https:// doi.org/10.1080/00194506.2019.1677512
- 41. Hamdi G.M., Abbas M.N., Ali S.A.K. (2024). Bioethanol production from agricultural waste: a review. Journal of Engineering and Sustainable Development, 28(2), 233–252. https://doi.org/10.31272/ jeasd.28.2.7
- 42. Hameed W.A., and Abbas M.N. (2024). Dyes adsorption from contaminated aqueous solution using SiO2 nanoparticles prepared from extracted tree leaves. Journal of Ecological Engineering, 25(7), 41–57. https://doi.org/10.12911/22998993/187921
- 43. Hasan M.B., Al-Tameemi I.M., Abbas M.N. (2021). Orange peels as a sustainable material for treating water polluted with antimony. Journal of Ecological Engineering, 22(2), 25–35. https://doi.org/10.12911/22998993/130632
- 44. Hashem N.S., Ali G.A.A., Jameel H.T., Khurshid A.N., Abbas M.N. (2021). Heavy metals evaluation by atomic spectroscopy for different parts of water hyacinth (Eichhornia Crassipes) plants: Banks of Tigris River and Al-Zuhairat Village Sites. Biochemical and Cellular Archives, 21(2), 3813–3819. https://connectjournals.com/03896.2021.21.3813
- 45. Ibrahim S.A., Hasan M.B., Al-Tameemi I.M., Ibrahim T.A., Abbas M.N. (2021). Optimization of adsorption unit parameter of hardness remediation from wastewater using low-cost media. Innovative Infrastructure Solutions, 6(4), Article number: 200. https://doi.org/10.1007/s41062-021-00564-3
- 46. Ibrahim T.A., Mahdi H.S., Abbas R.S., Abbas, M.N. (2020a). Study the effect of ribavirin drug on the histological structure of the testes in albino mice (Mus musculus). Journal of Global Pharma Technology, 12(2) Suppl., 142–146. http://www.jgpt.co.in/index. php/jgpt/article/view/3233
- 47. Ibrahim T.A., Mohammed A.M., Abd ali I.K., Abbas M.N., Hussien S.A. (2020b). Teratogenic effect of carbamazepine drug on the histological structure of testes in the albino mouse (Mus musculus). Indian Journal of Forensic Medicine & Toxicology, 14(4), 1829–1834. https://doi.org/10.37506/ijfmt.v14i4.11809
- 48. Jiménez S., Micó M.M., Arnaldos M., Medina F., Contreras S. (2018). State of the art of produced water treatment. Chemosphere, 192, 186–208. https:// doi.org/10.1016/j.chemosphere.2017.10.139
- 49. Khaleel L.R., Al-Hermizy, S. M., Abbas, M.N. (2022). Statistical indicators for evaluating the effect of heavy metals on samaraa drug industry water exposed to the sun and freezing. Tropical Journal of Natural Product Research, 6(12), 1969–1974. http://www.doi.org/10.26538/tjnpr/v6i12.12
- 50. Khudair S.Y., Alsarayreh, A.A., Abbas M.N. (2024). Adsorption of vanadium from Iraqi crude oil on nano zeolite and alum sludge. Journal of Engineering and Sustainable Development (JESD), 28(6), 762–769. https://doi.org/10.31272/jeasd.28.6.9
- 51. Maddodi S.A., Alalwan H.A., Alminshid A.H., Abbas M.N. (2020). Isotherm and computational fluid dynamics analysis of nickel ion adsorption from aqueous solution using activated carbon. South African Journal of Chemical Engineering, 32, 5–12. https://doi.org/10.1016/j.sajce.2020.01.002
- 52. Nguyen M, Tadi P. (2024). Iron Supplementation. Treasure Island (FL): StatPearls. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557376/
- 53. Ning X., Lin M., Huang G., Mao J., Gao Z., Wang X. (2023). Research progress on iron absorption, transport, and molecular regulation strategy in plants. Frontiers in plant science, 14, 1190768. https://doi.org/10.3389/fpls.2023.1190768
- 54. Porter J.L., Rawla P. 2024. Hemochromatosis. Treasure Island (FL): StatPearls. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430862/
- 55. Rajaa N., Kadhim F.J., Abbas M.N., Banyhussan Q.S. (2023). The improvement of concrete strength through the addition of sustainable materials (agro-waste loaded with copper ions). 3rd International Conference for Civil Engineering Science (ICCES 2023), IOP Conf. Series: Earth and Environmental Science, 1232, 012038, 9. http://doi.org/10.1088/1755-1315/1232/1/012038
- 56. Rajbongshi A., Gogoi S.B. (2024). A review on oilfield produced water and its treatment technologies. Petroleum Research. https://doi.org/10.1016/j. ptlrs.2024.06.003
- 57. Shadhan Z.J., Alhamd S., Abbas M.N. (2024). Recovery of vanadium element from wastewater of petroleum refineries using effective adsorbent: Mathematical approach via isothermal, kinetics and thermodynamic simulation. Al-Qadisiyah Journal for Engineering Sciences (QJES), 17(3), 211–219. https://doi.org/10.30772/qjes.2024.145441.1069
- 58. Ukhurebor K.E., Hossain I., Pal K., Jokthan G., Osang F., Ebrima F. and Katal D. (2024). Applications and Contemporary Issues with Adsorption for Water Monitoring and Remediation: A Facile Review. Topics in Catalysis, 67, 140–155. https:// doi.org/10.1007/s11244-023-01817-4
- 59. Zhang P., Yang M., Lan J., Huang Y., Zhang J., Huang S., Yang Y., Ru J. (2023). Water quality degradation due to heavy metal contamination: health impacts and eco-friendly approaches for heavy metal remediation. Toxics, 11(10), 828. https://doi.org/10.3390/toxics11100828
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea983ce9-8bc8-41e6-b289-8dec1532449c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.