PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of Hospital Wastewater Using Activated Sludge with Extended Aeration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hospital wastewater is of a complex nature and is generally discharged into urban sewage systems. This study evaluated the removal efficiency of organic and biological contaminants from a hospital wastewater treatment plant using extended aeration activated sludge. The study was conducted at a treatment plant scale, with 14 hours of feed. The plant consists of a pre-filter, a collector and crumbler tank, a homogenization tank, two biological reactors of 80 000 liters capacity each, two settlers and a contact disinfection chamber. Three flow rates of 3 L/s, 4 L/s and 5 L/s were tested in each biological reactor, with application of three concentrations of residual chlorine with sodium hypochlorite to the effluent of the settling tanks (0.3 ppm, 0.4 ppm and 0.5 ppm). The removal efficiency of suspended solids varied according to flow rate. The reactor with a flow rate of 3 L/s and 0.5 ppm of residual chlorine achieved the highest removal of suspended solids (91.95%), biological oxygen demand (97.52%) and fecal coliforms (99.99%). Finally, the quality of the hospital wastewater is within the limits of the national and international environmental quality thresholds.
Rocznik
Strony
24--32
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Facultad de Medicina Humana, Centro de Investigación en Medicinade Altura y Medio Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla No. 3909, Huancayo, Perú
  • Universidad Nacional Autónoma Altoandina de Tarma, Jr. Huaraz 431, Tarma, Perú
  • Facultad de Medicina Humana, Centro de Investigación en Medicinade Altura y Medio Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla No. 3909, Huancayo, Perú
  • Universidad Nacional Autónoma Altoandina de Tarma, Jr. Huaraz 431, Tarma, Perú
  • Universidad Nacional Autónoma Altoandina de Tarma, Jr. Huaraz 431, Tarma, Perú
  • Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú Av. Mariscal Castilla No. 3909, Huancayo, Perú
Bibliografia
  • 1. Abou-elela, S.I., Golinielli, G., Abou-taleb, E.M., Hellal, M.S. 2013. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecological Engineering, 61, 460–468. https://doi.org/10.1016/j.ecoleng.2013.10.010
  • 2. Abu ghararah, Z.H. 2008. Oxygen uptake rate as an extended aeration process control parameter, 30(5), 951–969. https://doi.org/10.1080/10934529509376242
  • 3. Agboola, J.I., Ndimele, P.E., Odunuga, S., Akanni, A., Kosemani, B., Ahove, M.A. 2016. Ecological health status of the Lagos wetland ecosystems: Implications for coastal risk reduction. Estuarine, Coastal and Shelf Science, 183, 73–81. https://doi.org/10.1016/J.ECSS.2016.10.019
  • 4. Al-Kubaisi, M.H.D., Al-Heety, E.A.M.S., Yousif, Y.M. 2021. Application of Organic Indicators and Overall Index to Assess the Level of Water Pollution in Habbaniya Lake, Iraq. The Iraqi Geological Journal, 54(2), 93–102. https://doi.org/10.46717/IGJ.54.2A.7MS-2021-07-28
  • 5. Alderton, I., Palmer, B. R., Heinemann, J. A., Pattis, I., Weaver, L., Gutiérrez-Ginés, M. J., Horswell, J., Tremblay, L.A. 2021. The role of emerging organic contaminants in the development of antimicrobial resistance. Emerging Contaminants, 7, 160–171. https://doi.org/10.1016/j.emcon.2021.07.001
  • 6. APHA/AWWA/WEF. 2012. Standard Methods for the Examination of Water and Wastewater. In Standard Methods. https://doi.org/ISBN 9780875532356
  • 7. Boillot, C., Bazin, C., Tissot-guerraz, F., Droguet, J., Perraud, M., Cetre, J.C. 2008. Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities, 3. https://doi.org/10.1016/j.scitotenv.2008.04.037
  • 8. Carraro, E., Bonetta, S., Bertino, C., Lorenzi, E., Bonetta, S., Gilli, G. 2016. Hospital effluents management: Chemical, physical, microbiological risks and legislation in different countries. Journal of Environmental Management, 168, 185–199. https://doi.org/10.1016/j.jenvman.2015.11.021
  • 9. Carraro, E., Bonetta, S., Bonetta, S. 2018. Hospital wastewater: Existing regulations and current trends in management. Handbook of Environmental Chemistry, 60, 1–16. https://doi.org/10.1007/698_2017_10
  • 10. Chonova, T., Keck, F., Labanowski, J., Montuelle, B. 2016. Separate treatment of hospital and urban wastewaters : A real scale comparison of effluents and their effect on microbial communities. Science of the Total Environment, 542, 965–975. https://doi.org/10.1016/j.scitotenv.2015.10.161
  • 11. Chonova, T., Keck, F., Labanowski, J., Montuelle, B., Rimet, F., Bouchez, A. 2016. Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities. Science of the Total Environment, 542, 965–975. https://doi.org/10.1016/j.scitotenv.2015.10.161
  • 12. Davis, M.L. 2005. Ingenieria Y Ciencias Ambientales, 762.
  • 13. Desye, B., Belete, B., Asfaw Gebrezgi, Z., Terefe Reda, T. 2021. Efficiency of Treatment Plant and Drinking Water Quality Assessment from Source to Household, Gondar City, Northwest Ethiopia. Journal of Environmental and Public Health, 2021. https://doi.org/10.1155/2021/9974064
  • 14. Eggen, R.I.L., Hollender, J., Joss, A., Scha, M. 2014. Reducing the Discharge of Micropollutants in the Aquatic Environment: The Bene fi ts of Upgrading Wastewater Treatment Plants.
  • 15. El Morabet, R., Abad Khan, R., Mallick, J., Khan, N. A., Ahmed, S., Dhingra, A., Rahman Khan, A., Alsubih, M., Alqadhi, S., Bindajam, A. 2020. Comparative study of submerged membrane bioreactor and extended aeration process coupled with tubesettler for hospital wastewater treatment. Alexandria Engineering Journal, 59(6), 4633–4641. https://doi.org/10.1016/j.aej.2020.08.021
  • 16. Grandclément, C., Seyssiecq, I., Piram, A., Wongwah-chung, P., Vanot, G., Tiliacos, N., Roche, N., Doumenq, P. 2017. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Research, https://doi.org/10.1016/j.watres.2017.01.005
  • 17. Haddar, W., Baaka, N., Meksi, N., Elksibi, I., Farouk Mhenni, M. 2014. Optimization of an ecofriendly dyeing process using the wastewater of the olive oil industry as natural dyes for acrylic fibres. Journal of Cleaner Production, 66, 546–554. https://doi.org/10.1016/j.jclepro.2013.11.017
  • 18. Hassan, S.K., Hussein, A.S. 2021. Physical and chemical evaluation and efficiency of Hilla water purification station, Iraq. Iranian Journal of Ichthyology, 8(Special Issue 1), 177–186.
  • 19. Hocaoglu, S.M., Celebi, M.D., Basturk, I., Partal, R. 2021. Treatment-based hospital wastewater characterization and fractionation of pollutants. Journal of Water Process Engineering, 43(July), 102205. https://doi.org/10.1016/j.jwpe.2021.102205
  • 20. Khan, N.A., Vambol, V., Vambol, S., Bolibrukh, B., Sillanpaa, M., Changani, F., Esrafili, A., Yousefi, M. 2021a. Hospital effluent guidelines and legislation scenario around the globe: A critical review. Journal of Environmental Chemical Engineering, 9(5), 105874. https://doi.org/10.1016/j.jece.2021.105874
  • 21. Khan, N.A., Vambol, V., Vambol, S., Bolibrukh, B., Sillanpaa, M., Changani, F., Esrafili, A., Yousefi, M. 2021b. Hospital effluent guidelines and legislation scenario around the globe: A critical review. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.105874
  • 22. Kumari, A., Singh, N., Tiwari, B. 2020. Hospital wastewater treatment scenario around the globe. Current Developments in Biotechnology and Bioengineering, 68(1), 1–12. https://doi.org/10.1016/B978-0-12-819722-6.00015-8 © 2020 Elsevier B.V. All rights reserved.%0A549
  • 23. Lien, L.T.Q., Hoa, N.Q., Chuc, N.T.K., Thoa, N.T.M., Phuc, H.D., Diwan, V., Dat, N.T., Tamhankar, A.J., Lundborg, C.S. 2016. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-a one year study from Vietnam. International Journal of Environmental Research and Public Health, 13(6), 1–13. https://doi.org/10.3390/ijerph13060588
  • 24. Luo, Y., Guo, W., Hao, H., Duc, L., Ibney, F., Zhang, J., Liang, S., Wang, X.C. 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, The, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065
  • 25. Mackie, G. 2001. The zebra mussel, Dreissena polymorpha: a synthesis of European experiences and a preview for North America.
  • 26. Majumder, A., Gupta, A. K., Ghosal, P.S., Varma, M. 2021. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. Journal of Environmental Chemical Engineering, 9(2). https://doi.org/10.1016/j.jece.2020.104812
  • 27. Michalska, J., Mrozik, A. 2018. Application of bioaugmentation in the processes of biological wastewater treatment and sludge utilization.
  • 28. MINEN. 2010. Supreme Decree N°003-2010-MIN-EN. In El Peruano. https://www.minam.gob.pe/disposiciones/decreto-supremo-n-003-2010-minam/
  • 29. Mirzaei, N., Ghaffari, H.R., Karimyan, K., Moghadam, F.M., Javid, A., Sharafi, K. 2015. Survey of effective parameters (Water sources, seasonal variation and residual chlorine) on presence of thermotolerant coliforms bacteria in different drinking water resources. International Journal of Pharmacy and Technology, 7(3), 9680–9689.
  • 30. Ooi, G.T.H., Tang, K., Chhetri, R.K., Kaarsholm, K.M.S., Sundmark, K., Kragelund, C., Litty, K., Christensen, A., Lindholst, S., Sund, C., Christensson, M., Bester, K., Andersen, H.R. 2018. Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes. Bioresource Technology, 267, 677–687. https://doi.org/10.1016/j.biortech.2018.07.077
  • 31. OriginLab. 2022. OriginLab - Origin and OriginPro - Data Analysis and Graphing Software.
  • 32. Pahlavanzadeh, S., Zoroufchi Benis, K., Shakerkhatibi, M., Karimi Jashni, A., Taleb Beydokhti, N., Alizadeh Kordkandi, S. 2018. Performance and kinetic modeling of an aerated submerged fixed-film bioreactor for BOD and nitrogen removal from municipal wastewater. Journal of Environmental Chemical Engineering, 6(5), 6154–6164. https://doi.org/10.1016/j.jece.2018.09.045
  • 33. Parida, V.K., Sikarwar, D., Majumder, A., Gupta, A.K. 2022. An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. Journal of Environmental Management, 308(January). https://doi.org/10.1016/j.jenvman.2022.114609
  • 34. Perrodin, Y., Christine, B., Sylvie, B., Alain, D., Jean-luc, B., Cécile, C., Audrey, R., Elodie, B. 2013. Chemosphere A priori assessment of ecotoxicological risks linked to building a hospital. Chemosphere, 90(3), 1037–1046. https://doi.org/10.1016/j.chemosphere.2012.08.049
  • 35. Rawat, A., Joshi, G.K. 2019. Physicochemical and microbiological assessment of spring water in central Himalayan region. Environmental Monitoring and Assessment, 191(4). https://doi.org/10.1007/s10661-019-7369-4
  • 36. Rivas, J., Prazeres, A.R., Carvalho, F. 2011. Aerobic biodegradation of precoagulated cheese whey wastewater. Journal of Agricultural and Food Chemistry, 59(6), 2511–2517. https://doi.org/10.1021/jf104252w
  • 37. Rodriguez-Moza, S., Weinberg, H.S. 2010. Meeting report: Pharmaceuticals in water-an interdisciplinary approach to a public health challenge. Environmental Health Perspectives, 118(7), 1016–1020. https://doi.org/10.1289/ehp.0901532
  • 38. Santoro, D.O., Cardoso, A.M., Coutinho, F.H., Pinto, L.H., Vieira, R.P., Albano, R.M., Clementino, M.M. 2015. Diversity and antibiotic resistance profiles of Pseudomonads from a hospital wastewater treatment plant. Journal of Applied Microbiology, 119(6), 1527–1540. https://doi.org/10.1111/jam.12936
  • 39. Sarizadeh, G., Geravandi, S., Takdastan, A., Javanmaerdi, P., Mohammadi, M.J. 2021. Efficiency of hospital wastewater treatment system in removal of level of toxic, microbial, and organic pollutant. Toxin Reviews, 0(0), 1–10. https://doi.org/10.1080/15569543.2021.1922923
  • 40. Thirugnanasambandham, K., Ganesamoorthy, R. 2019. Dual treatment of milk processing industry wastewater using electro fenton process followed by anaerobic treatment. International Journal of Chemical Reactor Engineering, 17(12), 1–10. https://doi.org/10.1515/ijcre-2019-0074
  • 41. Verlicchi, P., Al Aukidy, M., Zambello, E. 2015. What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives. Science of the Total Environment, 514, 467–491. https://doi.org/10.1016/j.scitotenv.2015.02.020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea97baf9-4ba5-4efa-908c-375495650076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.