Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Właściwości rozciągania, zginania i udarności ultramałych nanorurek wzmocnionych TiO2 kompozytów epoksydowych
Języki publikacji
Abstrakty
Ultrasmall TiO2 nanotubes (TiO2NTs) of the length ~250±20 nm and diameter ~20 nm are synthesized and TiO2NT reinforced (0.1 wt.%) epoxy composites are fabricated. The reinforcing effects are studied by means of tensile, flexural, and impact tests as per ASTM standards. TEM and XRD characterization techniques are used in this study. It is observed that TiO2NTs greatly enhanced the tensile strength by 85%, elongation by 7%, flexural strength by 55%, and the impact strength by 8%. The mechanical properties of the epoxy nanocomposites indicate that TiO2NTs are efficient fillers to enhance the performance of epoxy composites.
Czasopismo
Rocznik
Tom
Strony
128--133
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Department of Aeronautical Engineering, Institute of Aeronautical Engineering, Hyderabad 500043, India
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
autor
- Department of Mechanical Engineering, Hindustan Institute of Technology and Science, Chennai 603103, India
autor
- Computer Centre, Institute of Aeronautical Engineering, Hyderabad 500043, India
autor
- Department of Aeronautical Engineering, Institute of Aeronautical Engineering, Hyderabad 500043, India
autor
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
autor
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
Bibliografia
- [1] Njuguna J., Pielichowski K., Alcock J.R., Epoxy-based fibre reinforced nanocomposites, Adv. Eng. Mater. 2007, 9(10), 835-847, DOI: 10.1002/adem.200700118.
- [2] Hussain F., Hojjati M., Okamoto M., Gorga R.E., Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, J. Compos. Mater. 2006, 40(17), 1511-1575, DOI: 10.1177%2F0021998306067321.
- [3] Gu H., Ma C., Gu J., Guo J., Yan X., Huang J. et al., An overview of multifunctional epoxy nanocomposites, J. Mater. Chem. C. 2016, 4(25), 5890-5906, DOI: 10.1039/C6TC01210H.
- [4] Radford K.C., The mechanical properties of an epoxy resin with a second phase dispersion, J. Mater. Sci. 1971, 6(10), 1286-1291, DOI: 10.1007/BF00552042.
- [5] Azeez A.A., Rhee K.Y., Park S.J., Hui D., Epoxy clay nanocomposites – Processing, properties and applications: A review, Compos. Part B Eng. 2013, 45(1), 308-320, DOI: 10.1016/j.compositesb.2012.04.012.
- [6] Roy P., Berger S., Schmuki P., TiO2 nanotubes: Synthesis and applications, Angew. Chemie – Int. Ed. 2011, 50(13), 2904-2939, DOI: 10.1002/anie.201001374.
- [7] Ou H.H., Lo S.L., Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application, Sep. Purif. Technol. 2007, 58(1), 179-191, DOI: 10.1016/j.seppur.2007.07.017.
- [8] Suzuki Y., Yoshikawa S., Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method, J. Mater. Res. 2004, 19(4), 982-985, DOI: 10.1557/JMR.2004.0128.
- [9] Thamaphat K., Limsuwan P., Ngotawornchai B., Phase characterization of TiO2 powder by XRD and TEM, Kasetsart J. (Nat. Sci.) 2008, 42, 357-361.
- [10] Sunny A.T., Vijayan P., Adhikari R., Mathew S., Thomas S., Copper oxide nanoparticles in an epoxy network: Microstructure, chain confinement and mechanical behaviour, Phys. Chem. Chem. Phys. 2016, 18(29), 19655-19667, DOI: 10.1039/C6CP02361D.
- [11] Gu H., Guo J., He Q., Tadakamalla S., Zhang X., Yan X. et al., Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles, Ind. Eng. Chem. Res. 2013, 52(23), 7718-7728, DOI: 10.1021/ie400275n.
- [12] Al-Turaif H.A., Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin, Prog. Org. Coatings. 2010, 69(3), 241-246, DOI: 10.1016/j.porgcoat.2010.05.011.
- [13] Pablo C., Frank H., Toughening effects of titanium dioxide nanoparticles on TiO2/epoxy resin nanocomposites, Polym. Compos. 2010, 31(7), 1241-1246. https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.20911.
- [14] Kumar A., Anant R., Kumar K., Chauhan S.S., Kumar S., Kumar R., Anticorrosive and electromagnetic shielding response of a graphene/TiO2-epoxy nanocomposite with enhanced mechanical properties, RSC Adv. 2016, 6(114), 113405-14. DOI: 10.1039/C6RA15273B.
- [15] Ng C.B., Schadler L.S., Siegel R.W., Synthesis and mechanical properties of TiO2-epoxy nanocomposites, Nanostructured Mater. 1999, 12(1), 507-510, DOI: 10.1016/S0965-9773(99)00170-1.
- [16] Bittmann B., Haupert F., Schlarb A.K., Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship, Ultrason. Sonochem. 2011, 18(1), 120-126, DOI: 10.1016/j.ultsonch.2010.03.011.
- [17] Nehal A. Salahuddin, Maged El-Kemary E.M.I., High-performance flexible epoxy/ZnO nanocomposites with enhanced mechanical and thermal properties, Polym. Eng. Sci. 2017, 57(9), 932-946, https://onlinelibrary.wiley.com/doi/abs/10.1002/pen.24520.
- [18] Oréfice R.L., Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites, J. Brazilian Soc. Mech. Sci. 2001, 23(1), DOI: 10.1590/S0100-73862001000100001.
- [19] Xian G., Walter R., Haupert F., A synergistic effect of nano-TiO2 and graphite on the tribological performance of epoxy matrix composites, J. Appl. Polym. Sci. 2006, 102(3), 2391-2400, DOI: 10.1002/app.24496.
- [20] Yu W., Wang X., Tang Q., Guo M., Zhao J., Reinforcement of denture base PMMA with ZrO2 nanotubes, J. Mech. Behav. Biomed. Mater. 2014, 32, 192-197, DOI: 10.1016/j.jmbbm.2014.01.003.
- [21] Qi B., Lu S.R., Xiao X.E., Pan L.L., Tan F.Z., Yu J.H., Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide, Express Polym. Lett. 2014, 8(7), 467-479, DOI: 10.3144/expresspolymlett.2014.51.
- [22] Zhou Y.X., Wu P.X., Cheng Z.Y., Ingram J., Jeelani S., Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube, Express Polym. Lett. 2008, 2(1), 40-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea96c11d-1c0c-4d5c-817f-75f3a5d345e1