PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Removal of typical antibiotics from the symbiotic system of Microcystis aeruginosa and emergent plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a simulated urban river system, the conversion and distribution of six typical antibiotics were investigated under the following conditions: no plant, only Microcystis aeruginosa (algae) and algae combined with Juncus effusus, Cyperus alternifolius, and Acorus calamus. Through the calculation of the mass balance, the quantitative distribution of antibiotics in the water phase, sediment, Microcystis aeruginosa, and plant tissues, and the total elimination efficiency of the antibiotics were determined. The results showed that higher concentrations of sulfathiazole (STZ) and sulfamethoxazole (SMZ) were detected in the water phase of the non-plant group, which were 52.81% and 56.88%, respectively, and ciprofloxacin (CIP) and tetracycline (TCY) were detected higher in the sediment, up to 1562 ng/g and 1829 ng/g, respectively. The antibiotic removal rates have been greatly improved, and those in the system containing Microcystis aeruginosa were higher than that in the system without aquatic plants or algae. The calculation of the mass balance showed that the removal effect of algae combined with Juncus effusus was the best, and the removal rates (azithromycin (AZM) and clarithromycin (CLM)) were the highest, reaching 68.88% and 61.96%. It seems that algae and plants play an important role in the removal of antibiotics.
Rocznik
Strony
5--24
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
  • School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
Bibliografia
  • [1] TOPP E., RENAUD J., SUMARAH M., SABOURIN L., Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field, Sci. Total Environ., 2016, 562, 136–144. DOI: 10.1016/j.scitotenv.2016.03.210.
  • [2] ZHOU H., YING T., WANG X., LIU J., Occurrence and preliminarily environmental risk assessment of selected pharmaceuticals in the urban rivers, China, sci. Rep. UK, 2016, 6, 34928. DOI: 10.1038/srep34928.
  • [3] ZUO R., LIU X., ZHANG Q., WANG J., YANG J., TENG Y., CHEN X., ZHAI Y., Sulphonamide antibiotics in groundwater and their migration in the vadose zone: A case in a drinking water resource, Ecol. Eng., 2021, 162, 106175. DOI: 10.1016/j.ecoleng.2021.106175.
  • [4] SENTA I., TERZIC S., AHEL M., Analysis and occurrence of macrolide residues in stream sediments and underlying alluvial aquifer downstream from a pharmaceutical plant, Environ. Pollut., 2021, 273, 116433. DOI: 10.1016/j.envpol.2021.116433.
  • [5] NATARAJAN S., STAMPS R.H., MA L.Q., Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L. effects of frond harvesting regimes and arsenic levels in refill water, J. Hazard. Mater., 2011, 185, 983–989. DOI: 10.1016/j.jhazmat.2010.10.002.
  • [6] SU Y., Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment, Sci. Total Environ., 2021, 762, 144590. DOI: 10.1016/j.scitotenv.2020.144590.
  • [7] LI S., SHOW P.L., NGO H.H., HO S.-H., Algae-mediated antibiotic wastewater treatment: A critical review, Environ. Sci. Ecotechnol., 2022, 9, 100145. DOI: 10.1016/j.ese.2022.100145.
  • [8] CHAN S.S., KHOO K.S., CHEW K.W., LING T.C., SHOW P.L., Recent advances biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium. A review, Bioresour. Technol., 2022, 344, 126159. DOI: 10.1016/j.biortech.2021.126159.
  • [9] CUELLAR-BERMUDEZ S.P., ALEMAN-NAVA G.S., CHANDRA R., GARCIA-PEREZ J.S., CONTRERAS- -ANGULO J.R., MARKOU G., MUYLAERT K., RITTMANN B.E., PARRA-SALDIVAR R., Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater, Algal Res., 2017, 24, 438–449. DOI: 10.1016/j.algal.2016.08.018.
  • [10] ZHOU H., CHEN X., YING T., XUAN Y., WANGJIN Y., LIU X., Variations and behavior of wastewater-marking pharmaceuticals influenced under hydrodynamic conditions in urban river systems, Int. J. Environ. Sci. Technol., 2019, 16, 5669–5684. DOI: 10.1007/s13762-018-2038-7.
  • [11] ZHOU H., LIU X., CHEN X., YING T., YING Z., Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers, Sci. Total Environ., 2018, 636, 1291 –1302. DOI: 10.1016/j.scitotenv.2018.04.384.
  • [12] NIU X., FAN M., CHANG J., Organ matter accumulation in a constructed wetland during operation, Acta Ecol. Sin., 2002, 22, 1240–1246.
  • [13] SUDIARTO S.I.A., RENGGAMAN A., CHOI H.L., Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics, J. Environ. Manage., 2019, 231, 763–769. DOI: 10.1016/j.jenvman.2018.10.070.
  • [14] WANG W., QU X., LIN D., YANG K., Octanol–water partition coefficient (logKOW) dependent movement and time lagging of polycyclic aromatic hydrocarbons (PAHs) from emission sources to lake sedi- ments: A case study of Taihu Lake, China, Environ. Pollut., 2021, 288, 117709. DOI: 10.1016/j.envpol.2021.117709.
  • [15] BARAN W., SOCHACKA J., WARDAS W., Toxicity and biodegradability of sulphonamides and products of their photocatalytic degradation in aqueous solutions, Chemosphere, 2006, 62, 1295–1299. DOI: 10.1016/j.chemosphere.2006.04.040.
  • [16] RICHARDSON B.J., LAM P.K.S., MARTIN M., Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China, Mar. Pollut. Bull., 2005, 50, 913–920. DOI: 10.1016/j.marpolbul.2005.06.034.
  • [17] FIGUEROA R.A., LEONARD A., MACKAY A.A., Modeling tetracycline antibiotic sorption to clays, Environ. Sci. Technol., 2004, 38, 476–483. DOI: 10.1021/es0342087.
  • [18] ZHANG J., DONG Y., Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China, J. Hazard. Mater., 2008, 151, 833–839. DOI: 10.1016/j.jhazmat.2007.11.046.
  • [19] BOXALL A.B.A., JOHNSON P., SMITH E.J., Uptake of veterinary medicines from soils into plants, J. Agr. Food Chem., 2006, 54, 2288–2297. DOI: 10.1021/jf053041t.
  • [20] YU F., SUN Q., LIU Y., PENG Y., REN K., Study on the absorption and transport characteristics of fluoroquinolones (FQs) antibiotics in mangrove organs of Zhenhaiwan, Guangdong province, J. Environ. Sci., 2017, 37, 4427–4435.
  • [21] CUI H., HENSE B.A., MULLER J., SCHRODER P., Short-term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia, Chemosphere, 2015, 134, 307–312.
  • [22] DETTENMAIER E.M., DOUCETTE W.J., BUGBEE B., Chemical hydrophobicity and uptake by plant roots, Environ. Sci. Technol., 2009, 43, 324–329.
  • [23] KIM Y., KIM W., Roles of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds, Water Res., 2000, 34, 3285–3294.
  • [24] DORDIO A.V., BELO M., MARTINS TEIXEIRA D., PALACE CARVALHO A.J., DIAS C.M., PICO Y., PINTO A.P., Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment, Biores. Technol., 2011, 102, 7827–7834.
  • [25] XINJIE W., XIN N., QILU C., LIGEN X., YUHUA Z., QIFA Z., Vetiver and Dictyosphaerium sp. co-culture for the removal of nutrients and ecological inactivation of pathogens in swine wastewater, J. Adv. Res., 2019, 20, 71–78. DOI: 10.1016/j.jare.2019.05.004.
  • [26] KOSMA C., LAMBROPOULOU D.A., ALBANIS T.A., Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece, J. Hazard. Mater., 2010, 179, 804–817. DOI: 10.1016/j.jhazmat.2010.03.075.
  • [27] KIM Y., CHOI K., JUNG J., PARK S., KIM P., PARK J., Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulphonamides, and their potential ecological risks in Korea, Environ. Int., 2007, 33, 370–375. DOI: 10.1016/j.envint.2006.11.017.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea9546d3-d55d-4ba0-89be-b23b075615a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.