Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Efficiency of application the alternative drive in urban transport buses
Języki publikacji
Abstrakty
Europejska polityka transportowa na pierwszą połowę XXI wieku zakłada stworzenie systemu transportu zorganizowanego z poszanowaniem zasady zrównoważonego rozwoju, zaspokajającego gospodarcze, społeczne i ekologiczne potrzeby społeczeństwa oraz sprzyjającego budowaniu zintegrowanego społeczeństwa i konkurencyjnej Europy. Istotnym instrumentem tej polityki jest zastosowanie alternatywnych paliw i napędów w środkach transportu publicznego. W artykule przedstawiono stosowane w transporcie publicznym paliwa i napędy alternatywne. Omówiono założenia metodyczne oceny efektywności finansowej inwestycji związanych z pozyskiwaniem środków transportu publicznego z napędem alternatywnym oraz wyniki oceny dla wybranych napędów alternatywnych.
European transport policy for the first half the 21st century assumes creating the transport system organised with the respect of the principle of sustainable development, providing economic, social and ecological needs of the society and supporting construction of the integrated society and entirely integrated and competitive Europe. Applying alternative fuels and drives in public transport vehicles is an essential instrument of this policy. In the paper fuels applied in the urban transport and alternative drives were described. Methodological establishments of evaluation of the investment's financial and economical effectiveness associated with acquiring public means of transport with the alternative drive were discussed as well as results of the effectiveness evaluation of selected applications of alternative drives.
Czasopismo
Rocznik
Tom
Strony
41--51
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Uniwersytet Technologiczno-Humanistyczny w Radomiu
autor
- Politechnika Opolska
autor
- Uniwersytet Technologiczno-Humanistyczny w Radomiu
Bibliografia
- 1. Bowen, R.M., Burgstahler, D., Daley, L.A. (1987). The Incremental Information Content of Accrual Versus Cash Flows.The Accounting Review, 4 (62), 723–747.
- 2. Brito, T.L.F., Moutinho dos Santos, E., Galbieri, R., Medeiros Costa, H.K. de (2017). Qualitative Comparative Analysisof Cities That Introduced Compressed Natural Gas to Their Urban Bus Fleet. Renewable and Sustainable Energy Reviews, 71, 502–508. DOI: 10.1016/j.rser.2016.12.077.
- 3. Cooper, E., Arioli, M., Carrigan, A., Lindau, L.A. (2014). Exhaust Emissions of Transit Buses: Brazil and India Case Studies. Research in Transportation Economics, 48, 323–329. DOI: 10.1016/j.retrec.2014.09.059.
- 4. Dyr, T. (2018). Solaris – lider na rynku autobusów miejskich w Polsce. Autobusy – Technika, Eksploatacja, Systemy Transportowe, 1–2 (19), 18–25. DOI: 10.24136/atest.2018.001.
- 5. Dyr, T., Kozubek, P.R. (2013). Ocena transportowych inwestycji infrastrukturalnych współfinansowanych z funduszy Unii Europejskiej. Radom: Instytut Naukowo-Wydawniczy „Spatium”.
- 6. Dyr, T., Misiurski, P. (2016). Prognozowanie kosztów utrzymania i eksploatacji taboru autobusowego. Problemy Transportu i Logistyki, 3 (35), 19–28. DOI: 10.18276/ptl.2016.35-02.
- 7. Economides, M.J., Wood, D.A. (2009). The State of Natural Gas. Journal of Natural Gas Science and Engineering, 1 (1), 1–13. DOI: 10.1016/j.jngse.2009.03.005.
- 8. Florio, M. (2006). Cost–benefit Analysis and the European Union Cohesion Fund: On the Social Cost of Capital and Labour. Regional Studies, 40 (2), 211–224. DOI: 10.1080/00343400600600579.
- 9. Florio, M. (2014). Applied Welfare Economics. Cost–Benefit Analysis of Projects and Policies. New York: Routledge.
- 10. Gerbec, M., Samuel, R.O., Kontić, D. (2015). Cost Benefit Analysis of Three Different Urban Bus Drive Systems Using Real Driving Data. Transportation Research Part D: Transport and Environment, 41, 433–444. DOI: 10.1016/j. trd.2015.10.015.
- 11. Hairuddin, A.A., Yusaf, T., Wandel, A.P. (2014). A Review of Hydrogen and Natural Gas Addition in Diesel HCCI Engines. Renewable and Sustainable Energy Reviews, 32, 739–761. DOI: 10.1016/j.rser.2014.01.018.
- 12. Karavalakis, G., Hajbabaei, M., Jiang, Y., Yang, J., Johnson, K.C., Cocker, D.R., Durbin, T.D. (2016). Regulated, Greenhouse Gas, and Particulate Emissions from Lean-Burn and Stoichiometric Natural Gas Heavy-Duty Vehicles on Different Fuel Compositions. Fuel, 175, 146–156. DOI: 10.1016/j.fuel.2016.02.034.
- 13. Komunikat (2013a). Komunikat Komisji do Parlamentu Europejskiego, Rady, Europejskiego Komitetu Ekonomiczno-Społecznego i Komitetu Regionów. Czysta energia dla transportu: europejska strategia w zakresie paliw alternatywnych.Bruksela: Komisja Europejska. COM 017 final.
- 14. Komunikat (2013b). Komunikat Komisji do Parlamentu Europejskiego, Rady, Europejskiego Komitetu Ekonomiczno--Społecznego i Komitetu Regionów. Wspólne dążenie do osiągnięcia konkurencyjnej i zasobooszczędnej mobilności w miastach. Bruksela: Komisja Europejska. COM 913 final.
- 15. Lajunen, A. (2014a). Energy Consumption and Cost-Benefit Analysis of Hybrid and Electric City Buses. Transportation Research Part C: Emerging Technologies, 38, 1–15. DOI: 10.1016/j.trc.2013.10.008.
- 16. Lajunen, A. (2014b). Fuel Economy Analysis of Conventional and Hybrid Heavy Vehicle Combinations Over Real-World Operating Routes. Transportation Research Part D: Transport and Environment, 31, 78–84. DOI: 10.1016/j. trd.2014.05.023.
- 17. Maráková, V., Dyr, T., Wolak-Tuzimek, A. (2016). Factors of Tourism’s Competitiveness in the European Union Countries. E a M: Ekonomie a Management, 19 (3), 92–109. DOI: 10.15240/tul/001/2016-3-007.
- 18. Miles, J., Potter, S. (2014). Developing a Viable Electric Bus Service: The Milton Keynes Demonstration Project. Research in Transportation Economics, 48, 357–363. DOI: 10.1016/j.retrec.2014.09.063.
- 19. Ministerstwo Gospodarki (2015). Projekt Polityki energetycznej Polski do 2050 roku. Warszawa. Pobrane z: http://bip. me.gov.pl/node/24670 (20.04.2018).
- 20. Mishan, E.J. (1971). The Postwar Literature on Externalities: An Interpretative Essay. Journal of Economic Literature, 1 (9), 1–28.
- 21. Nadaletti, W.C., Cremonez, P.A., de Souza, S.N.M., Bariccatti, R.A., Belli Filho, P., Secco, D. (2015). Potential Use of Landfill Biogas in Urban Bus Fleet in the Brazilian States: A Review. Renewable and Sustainable Energy Reviews, 41, 277–283. DOI: 10.1016/j.rser.2014.08.052.
- 22. Nanaki, E.A., Koroneos, C.J., Xydis, G.A., Rovas, D. (2014). Comparative Environmental Assessment of Athens Urban Buses-Diesel, CNG and Biofuel Powered. Transport Policy, 35, 311–318. DOI: 10.1016/j.tranpol.2014.04.001.
- 23. Romejko, K., Nakano, M. (2017). Portfolio Analysis of Alternative Fuel Vehicles Considering Technological Advancement, Energy Security and Policy. Journal of Cleaner Production, 142 (Part 1), 39–49. DOI: 10.1016/j.jclepro.2016.09.029.
- 24. Romer, P.M. (1990). Endogenous Technological Change. Journal of Political Economy, 98 (5, Part 2), S71–S102. DOI:10.1086/261725.
- 25. Rusak, Z. (2016). Tytuł International Bus of the Year dla new Solarius Urbino electric. Autobusy – Technika, Eksploatacja, Systemy Transportowe, 7–8 (17), 12–20.
- 26. Sartori, D., Catalano, G., Genco, M., Pancotti, C., Sirtori, E., Vignetti, S., Del Bo, C. (2014). Guide to Cost-Benefit Analysis of Investment Projects. Economic Appraisal Tool for Cohesion Policy 2014–2020. Luxembourg: Publications Office of the European Union. DOI: 10.2776/97516.
- 27. Shirazi, Y., Carr, E., Knapp, L. (2015). A Cost-Benefit Analysis of Alternatively Fueled Buses with Special Considerations for V2G Technology. Energy Policy, 87, 591–603. DOI: 10.1016/j.enpol.2015.09.038.
- 28. Stiglitz, J.E. (2000). Economics of the Public Sector. New York–London: W.W Norton & Company.
- 29. Stocchetti, A., Volpato, G. (2010). In Quest for a Sustainable Motorisation: the CNG Opportunity. International Journal of Automotive Technology and Management, 1 (10), 13–36. DOI: http://dx.doi.org/10.1504/IJATM.2010.031454.
- 30. Štreimikienė, D., Mikalauskas, I. (2015). Internalization of External Costs in Lithuania and Poland. Journal of International Studies, 8 (3), 50–61. DOI: 10.14254/2071-8330.2015/8-3/4.
- 31. Turrio-Baldassarri, L., Battistelli, C.L., Conti, L., Crebelli, R., De Berardis, B., Iamiceli, A.L., Gambino, M., Iannaccone, S. (2006). Evaluation of Emission Toxicity of Urban Bus Engines: Compressed Natural Gas and Comparison with Liquid Fuels. Science of The Total Environment, 355 (1), 64–77. DOI: 10.1016/j.scitotenv.2005.02.037.
- 32. Wang, J. (2015a). Barriers of Scaling-Up Fuel Cells: Cost, Durability and Reliability. Energy, 80, 509–521. DOI: 10.1016/j. energy.2014.12.007.
- 33. Wang, J. (2015b). Theory and Practice of Flow Field Designs for Fuel Cell Scaling-Up: A Critical Review. Applied Energy, 157, 640–663. DOI: 10.1016/j.apenergy.2015.01.032.
- 34. White Paper (2001). European Transport Policy for 2010: Time to Decide – White Paper. Brussels: Commission of the European Communities. COM 370 final.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea941a17-c334-45d6-abd6-f44cc166b996