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Abstract  
 

In modelling reliability of systems with repair by stochastic processes of times between consecutive fail-
ures the usual Markovianity assumption was significantly relaxed. Instead of the Markovian stochastic 
processes, processes with long memory were constructed for the reliability and maintenance applica-
tions. The Markovianity restriction on the process’s memory could be omitted as two (relatively) new 
methods of the processes construction were employed. In this work, one of the two available methods, 
the ‘method of triangular transformations’, is presented. Other, the ‘method of parameter dependence’, 
is shortly described in Section 5. Since using an arbitrarily long memory has serious drawbacks in mod-
elling process we, on the other hand, limited it by introducing the notion of k-Markovianity (k = 1,2,…), 
where the memory is reduced to the last k previous (discrete) time epochs. The discussion of this kind of 
problems together with construction of some new classes of stochastic processes with discrete time and 
their reliability application is provided. 
 
1. Introduction  
 

Consider reliability of a system with repair. After 
each failure it is repaired and then it works again 
till next failure. In the framework we consider, 
times of repair are neglected. Every (random) time 
between (j – 1)-th and j-th failure (j = 1,2,…) we 
denote by Xj which is a nonnegative random quan-
tity. 
The times X1, X2,… form the stochastic process 
which stands for the model of such repairable sys-
tem. 
In most common literature, the usual assumption 
about this model is either independence of the ran-
dom variables X1, X2,… or Markovianity of the 
underlying stochastic process {Xj}. The foregoing 
assumption means that the each conditional distri-
bution Fj (xj | x1,…,xj – 1) of (Xj | x1,…,xj – 1) only 

depends on the condition Xj – 1 = xj – 1 and is inde-
pendent on the values x1,…,xj – 2. 
Thus, at a given time epoch, Xj – 1 = xj – 1, the future 
stochastic behavior up to the j-th failure only de-
pends on the previous cycle between (j – 2)-th and 
(j – 1)-th failure. So that the essential part of his-
tory of the system performance is very limited and 
often this assumption is not realistic. 
When the stochastic dependence is present, the 
Markovianity assumption mostly (with exception 
of the case of multivariate normal distributions 
which have very limited application to the  
considered reliability problems) is forced on re-
searchers by the lack of known properly defined 
analytical forms of conditional distributions, say, 
Fj (xj | x1,…,xj – 1) that explicitly depend on the val-
ues x1,…,xj – 2. 
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In reliability frameworks the need for such condi-
tional distributions is especially vital for the case 
when they are Weibullian including the exponen-
tial case. 
The stochastic process, governed by these distri-
butions, we call the process with good memory. 
It is then vital to find methods for construction of 
such analytical forms of the Fj (xj | x1,…,xj – 1) or 
of the conditional densities fj (xj | x1,…, xj – 1). 
Our goal is to present two such methods. One of 
the two is the parameter dependence method (Fi-
lus & Filus, 2008), but first we present the (par-
tially equivalent) triangular transformations 
method (Filus et al, 2010) this time in application 
to the construction of the stochastic processes. 
As for the method of triangular transformations, 
basically, in the case of stochastic processes, the 
method relies on transforming any renewal pro-
cess {Tj} (the random variables T1, T2,… are inde-
pendent and equally distributed) into the (in gen-
eral non-Markovian) stochastic process {Xj} with 
different and dependent terms. 
There are two basic versions of the transfor-
mations: finite dimensional (for random vectors) 
and infinite dimension (for the processes with dis-
crete times). 
 
2. Random vectors case 
 

For each finite n = 2,3,… define the class of pseu-
doaffine transformations which is the subclass of 
the most general considered class of triangular 
transformations of random vectors, say (T1,…,Tn) 
into random vectors (X1,…,Xn). (Here it is to be 
mentioned that the general triangular transfor-
mation is characterized by the only property of 
having its Jacoby matrix lower triangular.) 
The pattern for the finite, say Rn à Rn, pseu-
doaffine transformations is given by the following 
formula:  
 
X1 = ϕ0T1 + ψ0  (1) 
 
X2 = ϕ1(X1)T2 + ψ1(X1) 
 
… 
 
Xj = ϕj – 1(X1,…,Xj – 1)Tj + ψ j – 1(X1,…,Xj – 1) 
 
… 
 
Xn = ϕn – 1(X1,…,Xn – 1)Tn + ψn – 1(X1,…,Xn – 1),  

where, depending on a particular setting that may 
be encountered, a sense of the foregoing n equali-
ties (1) may vary from case to case. At least, how-
ever, it will be assumed they hold with respect to 
probability distributions of the sides. This or other 
weak meaning (equality with probability one or 
equality of the random variables’ realizations) of 
the underlying equalities can be adopted.  
The functions ϕ0, ϕ1(  ),…,ϕn – 1(  ) and ψ0, 
ψ1(  ),…,ψn – 1(  ), that we call the parameter func-
tions, are only assumed to be continuous and 
ϕ0, ϕ1(  ),…, ϕn – 1(  ) are never zero, with ϕ0 and 
ψ0, being constant. 
When all the parameter functions are reduced to 
constants, formula (1) reduces to the pattern for 
the class of well known (diagonal) affine map-
pings. If all ψ0, ψ1(  ),…, ψn – 1(  ) reduce to zero 
we call the transformations pseudolinear and if all 
ϕ0, ϕ1(  ),…, ϕn – 1(  ) reduce to the constant func-
tion equal 1 we call them pseudotranslations. No-
tice only at this point that, for any n = 2, 3,… all 
the triangular transformations form the algebraic 
group with respect to superposition and all the 
pseudoaffine, pseudolinear and pseudotransla-
tions form subgroups of the triangular group with 
respect to the same group operation with all the 
groups having as the unity the identity transfor-
mation (Filus & Filus, 1999). It is remarkable that 
all the transformations, given by pattern (1), are 
so easily (row by row) reversible. The transfor-
mation inverse to (1) is given as follows: 
 
T1 = (X1 – ψ0) / ϕ0 
 
T2 = (X2 – ψ1 (X1)) / ϕ1 (X1) (1*) 
 
… 
 
Tn = (Xn – ψn – 1(X1,…,Xn – 1)) / ϕn – 1(X1,…,Xn – 1). 
 
Also, the Jacobi matrix of any transformation (1) 
or its inverse (1*) turns out to be triangular, so 
that the jacobian, say J, of the inverse (1*) takes 
on remarkably simple form as the following arith-
metic product: 
 

J = ∏n
k = 1  ∂tk / ∂xk = 

 

 = [ϕ0]-1 . [ϕ1(x1)]-1 … [ϕn – 1(x1,…,xn – 1)]-1. 
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Therefore, the joint pdf of any output random vec-
tor (X1,…,Xn) can easily be obtained using the or-
dinary standard procedures for the calculations. 
Our interest lies in construction and investigation 
of the associated stochastic processes. 
But, because the finite dimension cases form an 
integral part of the being developed theory of the 
stochastic processes, and because these results are 
not widely enough known within the statistician 
communities, as well as, since most of the related 
publications in literature are not always at an im-
mediate easy reach, we have decided to sketch 
here the most basic findings on the finite dimen-
sion stochastic models. 
2 A. At least the following four new classes of  
n-variate pdfs can immediately be obtained by use 
of transformations (1). 
Although this is not necessary in more general set-
tings, for the purpose of reliability application we 
assume that the input random variables T1,…,Tn, 
present in (1), are independent, and that all of 
them belong to one of the four pdf classes i.e., ei-
ther the Gaussian, or the gamma, or the Weibul-
lian, or, in particular, to the class of exponentials. 
Considering other classes such as, for example, 
the Pareto or even some discrete distributions is 
possible as well. In each of the four cases (when-
ever the pdfs f1(t1),…,fn(tn) of the independent ran-
dom variables T1,…,Tn, are given), the standard 
procedure yields the joint pdf g(x1,…,xn) of the 
output random vector (X1,…,Xn) that is given by 
simple arithmetic product form: 
 
g(x1,…,xn) = 
 
= g1(x1), g2(x2 | x1),…,gn(xn | x1,…,xn – 1), (2) 
 
where g1(x1) is the (initial) marginal pdf of X1 
which, in most of important practical cases, 
simply satisfies the condition 
 
g1(x1) = f1(x1), 
 
while the remaining n – 1 pdfs are the conditional 
pdfs  
 
gj(xj | x1,…,xj – 1), of each Xj,  
 
given that  
 
X1 = x1,…, Xj – 1 = xj – 1  as  j = 2, 3,…, n. 
 

For all the four classes of the pdfs as specified 
above, it turns out that whenever pattern (1) is ap-
plied, all the n factors, i.e., the n pdfs in the prod-
uct (2), preserve the original class of the pdfs to 
which all the initial pdfs f1(t1),…, fn(tn) belong. 
According to a particular choice of class of the in-
put random vectors (T1,…,Tn) applied in (1), the 
so obtained joint pdfs g(x1,…,xn) of the corre-
sponding output random vectors (X1,…,Xn) we 
classify as: the FF-normal, also called pseudonor-
mal, see (Kotz et al, 2000) or FF-gamma (pseudo-
gamma) or FF-Weibullian (pseudoWeibullian) or 
FF-exponential (pseudoexponential), respectively. 
It is an interesting theoretical fact that each of the 
above defined four classes of the distributions  
is invariant with respect to all the transforma-
tions (1). 
2 B. Consider first the class (group) of the n-vari-
ate FF-normal distributions as wide extension of 
the n-variate normals. Although the normal distri-
butions can hardly be applied in reliability as 
models for life-times they can be applied with a 
pretty good accuracy as models for (random) sys-
tem strength. That is why we consider them in be-
low. 
When constructing the FF-normal by use of trans-
formation (1), see pseudonormal (an old version) 
in (Kotz et al, 2000, pages 217–218) we assume 
that the independent input random variables 
T1,…,Tn have each the normal N(µj,σj) distribution 
(j = 1,2,…,n). 
In this case the FF-normal pdf g(x1,…,xn) is given 
by the product (2) with each j-th factor being a 
normal pdf, with respect to the argument xj. 
The factor g1(x1) is an ordinary normal N(µ1,σ1) 
density. In most of potential applications it is as-
sumed to be identical to f1(t1) of T1 (where t1 = x1). 
For each j = 2,…,n the corresponding j-th condi-
tional normal (!) pdf in (2) is given by the formula: 
 
gj (xj | x1,…,xj – 1)  
 
= (σj | φj – 1(x1,...,xj – 1) | √2π)-1  
 
exp[– (xj – µj – ψj – 1(x1,...,xj – 1))2 /  
 
2σj

2(φj – 1(x1,...,xj – 1))2]. (3) 
 
The foregoing pdfs are exactly the normals  
N(µj + ψj – 1(x1,...,x j – 1); σj |φj – 1(x1,...,xj – 1)|) with 
respect to the xj variable, while φj – 1(x1,...,xj – 1), 
and ψj – 1(x1,...,xj – 1) are the parameter functions 
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that the pdfs gj (xj | x1,...,xj – 1) inherit from the 
given defining pseudoaffine transformation (1). 
The constants µj, σj are inherited from the (as-
sumed) normal N(µj;σj) pdf fj(tj) of the Tj, as  
j = 1, 2,…,n. 
Notice, that, unlike in the case of the n-variate 
normal pdfs, the corresponding regression func-
tions: 
 
E[X j | X1 = x1,…,Xj – 1 = x j – 1] = 
 
= µj + ψ j – 1(x1,...,xj – 1), 
 
in general are not linear in x1,...,xj – 1.  
The above regressions may be chosen to be any 
continuous functions in their arguments. In partic-
ular, adding a quadratic form in variables 
x1,...,xj – 1, to the usual linear form as present in the 
normal case, seems to be the right choice for ini-
tial investigations. In addition to that, the condi-
tional standard deviations 
 
[Var (Xj | x1,...,xj – 1)]½ = σj | φj – 1(x1,...,xj – 1) | 
 
may also be an arbitrary continuous function in 
the values x1,...,xj – 1, contrary to the (classical) 
normal cases where these must remain a constant.  
These facts suggest that, possibly, a number of 
various (unknown) stochastic dependencies, that 
may be described in the FF-normal models scope, 
cannot be expressed in the classical normal mod-
els framework. 
An expected (by the authors) benefit of this fact in 
stochastic modelling, (that follows the possibility 
of replacing the usual linear regression functions 
by a much more general continuous one) may be 
a significant gain in precision of the stochastic de-
scription of real life phenomena including those 
outside the scope of reliability problems. The im-
provement in modelling precision is the main prac-
tical motive for the FF-normal pdfs construction. 
As for the three other classes of the constructed 
multivariate pdfs, as directly applied to reliability 
theory, notice that all constructed pdfs are given 
in the form of product (2), where all the n factors 
belong to exactly one of the four, mentioned 
above, pdf classes. 
Now, in order to provide an illustration of a simi-
lar (to the FF-normal) bivariate FF-exponential 
pdf structure, consider the following scheme of 
pseudoaffine (more particularly, pseudolinear) 
transformations of the random vectors 

(T1,T2) à (X1,X2): 
 
X1 = a T1 
 
X2 = ϕ(X1) T2, 
 
where T1, T2 are assumed to be independent ran-
dom variables, and for k = 1, 2, Tk has a following 
one parameter exponential pdf 
 
fk(tk) = (1/θk) exp[– tk/θk]. 
 
Moreover, the symbol a in the latter transfor-
mation denotes a positive real number, and ϕ(x1) 
is only assumed to be a positive continuous real 
function. 
Also, (only for the reliability purposes) we should 
assume that ϕ(0) = 1. 
Simple calculations yield the following general 
formula for the scheme for bivariate FF-exponen-
tial pdfs of the random vectors (X1, X2): 
 
g(x1, x2) = g1(x1) g2(x2 |x1) = 
 
(aθ1)-1exp[– x1/(aθ1)](θ2ϕ(x1))-1exp[– x2/(θ2ϕ(x1))]. 
 
Specifically, we consider a subclass determined 
by class of the parameter functions 
 
ϕ(x1) = 1 + Ax1

r, 
 
(with A, and r, being positive real constants) as a 
particularly interesting case. 
Other interesting class is determined by the 
choice: ϕ(x1) = cosh(cx1), where c is a nonzero real 
number. However for the considered in this paper 
model of reliability of system with repair more 
proper parameter function would be a function 
ϕ(x1) such that | ϕ(x1) | ≤ 1 and with ϕ(x1) being a 
decreasing function in x1 (for example one may 
choose ϕ(x1) = exp[– ax1] or ϕ(x1) = 1/(1 + axα) with 
parameters a > 0, α > 0 to be statistically estimated. 
As it turns out, many analytical calculations as ap-
plied in order to obtain the pdf’s parameters, such 
as (all) moments or correlations, are easy (Filus & 
Filus 2001). 
 
3. Extension of random vectors to stochastic 

processes 
 

Letting n à ∞ in the pseudoaffine formula (1) one 
obtains the following extension of the pattern of 
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the pseudoaffine transformations that will be 
called an infinite pseudoaffines: 
 
X1 = ϕ0T1 + ψ0 (1**) 
 
… 
 
Xj = ϕj – 1(X1,…,X j – 1)Tj + ψj – 1(X1,…,Xj – 1) 
 
…, 
 
where j = 2, 3,… 
The time j, present in the above formula, is as-
sumed to take on all positive integer values, while 
all the transformations satisfying (1**) are 
thought of as R∞ à R∞ transformations. 
R∞ here is understood as the class of all sequencies 
of real numbers, possibly endowed with the 
Frechet metrics. 
The basic pattern of construction given ahead, 
mainly relies on transforming through (1**) some 
stochastic processes {T1,T2,…}, that usually are 
chosen to belong to certain important, well 
known, classes of the processes (for example, nor-
mal). 
As a result, in each such case, a relatively new 
class of the corresponding stochastic processes 
{X1,X2,…} with the discrete time j is determined. 
Similar constructions of stochastic processes with 
a continuous time can be found in (Filus & Filus, 
2008). 
(For the validity of that construction pattern real-
ize that every so obtained stochastic processes 
{X1,X2,…} can be equivalent to the (unique) se-
quence {h(n) (x1,…,xn)}n = 2,3,… of the well defined 
joint pdfs of the random vectors (X1,…,Xn), each 
being the output of the first n rows in (1). In such 
a case, the consistency of the underlying pdfs is 
obvious). 
The various analytical properties, of the pro-
cesses, often turn out to be very interesting, and 
seem to promise to be useful in applications in-
cluding reliability applications but not only. 
In some cases, in particular if the distributions of 
all the input random variables T1,T2,… are 
Weibullian, the classes of the obtained processes 
sometimes can be fruitfully extended even more 
when the infinite pseudoaffine scheme (1**) is re-
placed by the following, more general, infinite 
pseudopower (R∞ à R∞) transformations scheme: 
 
X1 = ϕ0T1

α(0) + ψ0 (4) 

… 
 
Xj = ϕj – 1(X1,…,Xj – 1)Tj α(j – 1) (X1,…,Xj – 1) + 
 
+ ψj – 1 (X1,…,Xj – 1) 
 
where, for j = 2,3,… and n = ∞, the symbols 
α(j – 1) (X1,…,Xj – 1), being the exponents at the 
arguments Tj, will be called exponent parameter 
functions with the random variables X1,…,Xj – 1 as 
their arguments, while the exponential parameter 
function α(0) is considered to be a nonzero real 
constant. 
Realize that if for all j = 1,2,… the conditions 
 
α(0) = α(1) (X1) = … = α(j – 1) (X1,…,Xj – 1) = 1 
 
are satisfied then scheme (4) reduces to the pseu-
doaffine scheme (1). This fact indicates signifi-
cant gain of generality once we replace the set of 
transformations (1) by those defined by (4). Real-
ize that even if we assume that the coefficients 
α(j – 1) (X1,…,Xj – 1) are only real non-zero con-
stants the gain of generality still remains signifi-
cant enough. 
(As it readily can be verified, pseudopower trans-
formations (4) are triangular and form the sub-
group of all the triangulars. Moreover, the pseu-
doaffine transformations’ group is the subgroup of 
the group of pseudopowers. However, either FF-
normals or FF-gamma (including FF-exponen-
tials) are not anymore invariant under the group 
of (4) while the invariance under all the (4) still 
takes place for the FF-Weibullians i.e., the image 
process {Xj} of the FF-Weibullian input process 
{Tj} under any transformation (4) remains FF-
Weibullian). 
The most striking fact, associated with the con-
struction of this kind of models, is simplicity. 
This, allows to preserve an analytical tractability 
for the most of important cases. 
First realize that in general the stochastic pro-
cesses obtained by the transformation method as 
well as by the method of parameter dependence 
have good memory in the sense that for every j the 
conditional probability distribution (or density) of 
the term Xj, given all the past: X1 = x1,…,Xj – 1 = xj – 1 
is explicitly given in an analytical form. To illus-
trate this let us give the following simple example. 
 
Example 
Set in the transformation (1**) all the translations 
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ψj – 1(X1,…,Xj – 1) to zero obtaining, in such a way, 
pseudolinear version of (1**). As an input sto-
chastic process {Tj} take sequence T1,T2,… of in-
dependent random variables each having the same 
exponential density: 
 
fk (tk) = (1/θ) exp[–tk / θ], k = 1, 2,… 
 
Using standard calculations for each j = 2, 3,… 
one obtains the conditional density of Xj, given all 
the past X1 = x1,…, Xj – 1 = xj – 1 in the following 
simple analytical form 
 
gj (xj | x1,...,xj – 1) = 
 
= (1/θ | ϕj – 1(x1,…,xj – 1)|) exp[– xj /θ | ϕj – 1(x1,…,xj – 1)|] 

(5) 
 
theoretically, no matter how big is the time j! 
The complexity of (5) only depends on a complex-
ity of a chosen parameter function 
 
ϕj – 1(x1,…,xj – 1). 
 
For an example of such a choice may serve the 
following simple function: 
 
ϕj – 1(x1,…,xj – 1) = 1 + A1x1

r + A2x2
r +…+  

 
+ Aj – 1xj – 1

r (5*) 
 
where Ak, k = 1,…,j – 1 are nonnegative real  
parameters and r is a nonzero real (in particular  
r = 1 or r = 2). 
The latter choice for ϕj – 1(x1,…,xj – 1) provides rel-
atively easy analytical computations. 
However, this model is not realistic when model-
ling reliability of systems with repair. 
The reason for this is that if to apply the parameter 
function (5*) in model (5) then as time j grows the 
conditional expectation E[Xj | x1,…,xj – 1] consid-
ered as the function of j grows while, in general, 
the reliability of the system after each repair de-
crease (in the sense of that conditional expecta-
tion). To avoid this discrepancy one should, for 
example, replace option (5*) in model (5) for 
more suitable following option: 
 
ϕj – 1(x1,…,xj – 1) =  
 
= exp[– (A1x1

r + A2x2
r +…+ Aj – 1xj – 1

r)] (5**) 
 

or we may use the model: 
 
ϕj – 1(x1,…,xj – 1) = 
 
= (1 + A1x1

r + A2x2
r +…+ Aj – 1xj – 1

r)-1. (5***) 
 
In the foregoing case the stochastic dependence of 
time Xj from the past, say X1,…,Xj – 1 remains 
strong (as j à ∞) and in general for the condi-
tional expected values we have 
 
E[Xj | x1,…,xj – 1] à 0  as j à ∞. 
 
The last relation is very realistic if one models 
times of functioning of the systems after, say  
(j – 1)-th repair (j = 2,3,… ) when system reliabil-
ity after each repair decreases. 
In this case one may consider end of the system 
exploitation after first r repairs (r = 1, 2,… ) such 
that E[Xr | x1,…,xr – 1] < t0, where t0 > 0 is consid-
ered a minimal reasonable time of the system 
work. After that r-th cycle the system is assumed 
to be replaced by a new one. Notice that, in this 
framework, r is discrete random variable and its 
expectation is a real, say E[r] = r*. The value r* 
may be applied as a measure of efficiency of the 
system maintenance process as well as (when the 
maintenance base offers service to a large number, 
say N, of the considered systems) can be used to 
determine the necessary resources needed for run-
ning a proper maintenance for the systems (cars, 
by example). Between others, the quantity r* can 
be used for estimation of expected amounts of 
spare parts so important for the efficiency of all 
the repairs. 
Many other models like (5*), (5**) and (5***) 
may be employed in the considered setting. This 
subject is to be more developed in future. 
 
4. The k-Markovianity 
 

As one can see, the memory of the stochastic pro-
cess defined by (1) or (4) theoretically can be ar-
bitrarily long i.e., may contain the whole process’s 
history. However, as j grows, this becomes im-
practical because the model, in its complexity, 
grows to infinite expression and, consequently, 
the number of parameters to be estimated grows 
without limitation. Such a model can only be ap-
plied to the system with repair when the time be-
tween the repairs quickly decreases so that num-
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ber of the repairs till the (last) r-th repair is rela-
tively small. 
In general, however, one needs to limit the 
memory of these stochastic processes to reduce 
their complexity and number of parameters. For 
this goal we may, between others, reduce the good 
(unlimited) memory by applying the notion of  
k-Markovianity (k = 0,1,2,…) with the regular 
Markovianity when k = 1 and independence when 
k = 0. 
For that purpose we first introduce the notion of 
k-Markovian triangular (here only pseudoaffine 
or pseudopower) transformations that will corre-
spond to the notion of the k-Markovian stochastic 
processes. 
 
Definition  
Let n = 3,4,… . Consider any pseudoaffine trans-
formation, subject to the scheme (1), all whose pa-
rameter functions satisfy: 
 
ϕj – 1(x1,…,xj – 1) = ϕj – 1(xj – k, xj – k + 1,…, xj – 2, xj – 1), 
 
ψj – 1(x1, …,xj – 1) =  
 
= ψj – 1(xj – k, xj – k + 1,…,xj – 2, xj – 1), (6) 
 
while, additionally, for the pseudopower transfor-
mations (4) we also have: 
 
α(j – 1) (X1,…,Xj – 1) =  
 
α(j – 1) (xj – k, xj – k + 1,…, xj – 2, xj – 1) (6*) 
 
(i.e., for each j = 2,…,n, and a fixed k = 0,1,2,…, 
j – 1, the above functions do not depend on the 
values x1,…,xj – k – 1). A class of such transfor-
mations will be called (finite or infinite, according 
to the cases n < ∞, and n = ∞, respectively) class 
of k-th degree Markovian pseudoaffine transfor-
mations or, shorter k-Markovian transformations. 
Consequently, a pseudoaffine transformation is 
Markovian if it is k-Markovian, with k =1. 
As for k = 0 the parameter functions (6) reduce to 
constants and the resulting zero degree pseu-
doaffine transformations are the regular affine. 
The stochastic process {Xj} is a k-Markovian  
(k = 1, 2,…) if for any integer j ≥ k + 1, the condi-
tional pdf gj (xj | …) of the random variable Xj , 
given a past X1,…,Xj – 1, (j = 2,3,…), satisfies the 
condition: 
 

gj (xj | x1,…,xj – 1) = 
 
= gj (xj | xj – k, xj – k + 1,…,xj – 2, xj – 1)  (7) 
 
If all the random variables X1, X2,… are mutually 
independent then we will consider the process to 
be zero-Markovian or of Markovianity zero i.e.,  
k = 0. 
 
Proposition 
1. For each k = 0,1,2,… , any k-Markovian sto-

chastic process can be obtained using a 0-Mar-
kovian process {Tj} (T1, T2,… are independent) 
by applying to it some k-Markovian pseu-
doaffine or pseudopower transformation. 

2. If the k-Markovian transformation is applied to 
an r-Markovian stochastic process then the re-
sulting stochastic process will be (k + r)-Mar-
kovian. 

The proof requires only simple standard calcula-
tions. 
One obtains the following Corollary. 
 
Corollary  
For any fixed value of k, the property of the  
k-Markovianity of a stochastic processes is invar-
iant under any (ordinary) affine (so, in particular 
linear) transformation. 
For the above statement to hold it is enough to re-
alize that the regular affine transformations are 
pseudoaffine of the Markovianity zero. 
 
Remark: Introducing the k-Markovian processes 
as the stochastic models has the following ad-
vantages. 
1. By incorporating more (than in a regular Mar-

kovian model) information on the past, that 
significantly influence the present probability 
distribution of, say, quantity Xj, one obtains a 
more accurate description of modeled realities 
in the sense of better fit to data. Also, future 
predictions on probability distributions of ran-
dom variables, say, Xj + 1, Xj + 2,… made at a 
time instant j, are expected to be more precise 
than those based on ordinary Markovian mod-
els. 

2. The usually met increment in computational 
complexity, associated with attempts such as 
the above, in this case is not that dramatic. As 
it turns out, most of the important calculations 
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associated with the k-Markovian (for k ≥ 2) sto-
chastic processes, in general can be handled in 
an analytical way. 

3. Possibilities of direct application of the k-Mar-
kovian stochastic processes as models, for reli-
ability of systems with repair seems to be evi-
dent. One may consider the stochastically de-
pendent times X1, X2,… between failures (each 
followed by a repair) as a k-Markovian stochas-
tic process, for some k = 1, 2,… to be chosen. 
 

5. Parameter dependence method 
 

All the conditional and multivariate probability 
distributions, so far considered, we can obtain by 
the method of some triangular transformations. 
However, they may also be obtained by simpler 
method of the parameter dependence (Filus & Fi-
lus, 2013). Actually, it is required only to obtain 
the sequence of the conditional distributions (here 
the densities) gj(xj | x1,…, xj – 1) of the random var-
iables Xj, (j = 2, 3,…) given realizations x1,…,xj – 1 
of earlier random variables X1,…,Xj – 1.  
Using the method of parameter dependence, it is 
obtained from the densities fj (tj, θj) of the random 
variable Tj which are independent from the past 
T1,…,Tj – 1 , and θj is a scalar or vector parameter 
of the density fj (tj, θj) of the Tj. 
Realize that when using transformation method 
for the examples, given above, in one of the cases 
the normal density N(µj, σj ) of Tj were turned into 
the conditional density 
 
gj (xj | x1,…,xj – 1) = 
 
= N(µj + ψj – 1(x1,...,xj – 1); σj | φ – 1(x1,...,xj – 1)|) of Xj. 
 
But this can be done differently. Let θj = (µj, σj) be 
the vector parameter of the normal density of Tj. 
All what has happened was transformation of the 
original parameters: 
 
µj à mj = µj + ψj – 1(x1,...,xj – 1)  
 
and 
 
σj à sj = σj |φj – 1(x1,...,xj – 1)|, 
 
so that the values of new parameters mj and sj be-
came continuous (only) functions of the past val-
ues x1,...,xj – 1. 
This also happens in other cases. For example, 

when using the pseudolinear transformation and 
when Tj has the exponential density fj (tj, θj) then 
to obtain the conditional density gj (xj | x1,…,xj – 1) 
from fj (tj, θj) it is enough to change the parameter 
θj to its new value θj | φj – 1(x1,...,xj – 1)|. 
In the general case the following assignments for 
random variables: 
 
Tj

wà Xj 
 
we call the weak transformation. 
This transformation is equivalent to the following 
(strong or deterministic) transformation of the 
densities: 
 
fj (tj, θj) à gj (xj | x1,…,xj – 1), 
 
which is defined through the parameter’s assign-
ment: 
 
θj à θj (x1,...,xj – 1), 
 
where the parameter θj on the left-hand side is the 
original constant parameter of the density fj (tj, θj) 
of Tj. 
The final formula which defines the conditional 
density is: 
 
gj (x j | x1,…,xj – 1) = fj (tj, θj (x1,...,xj – 1)), 
 
where the continuous function θj (x1,...,xj – 1), be-
longs to a family of parameter functions and is es-
timated and then verified by statistical methods. 
This is to be recommended to choose θj (x1,...,xj – 1) 
from some parametrized family of continuous 
function that has its own parameters so that  
θj (x1,...,xj – 1) = θj (x1,...,xj – 1; A, B, C,…), where A, 
B, C,… are some numerical parameters to be esti-
mated and then verified. Thus, the eventual statis-
tical methods to be employed are mostly parametric. 
The choice among the parametric families (for ex-
ample, polynomial functions, exponential, loga-
rithmic etc.), as governed by best fit to a given 
data, also should be made by use of statistical 
methods. It looks like a lot of the statistical work 
can be involved. This is, however, left for future 
or, eventually, for other researchers. 
 
6. Conclusions 
 

1. Extension (together with the possibility of new 
constructions) of Markov stochastic process 
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paradigm to the case of long memory processes 
not only increase the flexibility of the models 
but, independently of that, the extension allows 
to use additional information incorporated to 
the new model for estimating tendencies of 
(times between repairs in our case) the behav-
iour of the process realizations. It may be im-
portant not only to know the recent process’s 
behaviour but also how that behaviour evalu-
ates in time. For example, having model (5) to-
gether with its specification (5***) we better 
may predict next time-length of the operation 
(or next few cycles) if we know the tendency 
according to which the consecutive times of 
system operating decrease. 

2. The complexity of the underlying expressions 
is the price for the new advantages. However, 
the increment of that complexity is not so dra-
matic. 

3. More concerns may follow the fact that number 
of parameters to be estimated by statistical 
methods may increase significantly. Reducing 
number of the parameters by incorporating the 
idea of k-Markovianity, especially if k is small, 
may help the problem but then information on 
the tendency of process behaviour may be lim-
ited. This, in turn, makes eventual future pro-
cess’s predictions less accurate. Finding, in 
such a case, an optimal decision on the size of 
the number k may create optimality problems 
which, if applied, enrich the underlying theory. 
That kind of eventual solutions will strongly 
depend on sizes of statistical samples available. 

4. The purpose of extending Markovian processes 
toward the processes with long memory is to 
enhance an accuracy of the models. From that 
point of view, however, a serious obstacle for 
the intended accuracy improvement is an incre-
ment of several parameters, each of them re-
sulting with an additional error associated with 
its statistical estimation. Also, the complexity 
of an underlying analytical expressions grows. 
The problem met at this point requires solu-
tions as to choose the proper model in balanc-
ing between increment of the new model accu-
racy and arising difficulties above mentioned. 
The decision on the model choice (such as a 
choice of a proper parameter functions) must 
be done separately in each particular case or a 
class of cases. Again, many depends on amount 
of statistical data available that can be applied 
(to predictions, for example). 

5. Two different methods of the stochastic pro-
cesses construction were presented. The 
method of parameter dependence is, however, 
simpler and the class of the stochastic pro-
cesses as obtained by this method is wider. 
Also, every process obtained by applying a 
transformation can be obtained by the parame-
ter dependence. However, the big advantage of 
triangular transformations is the possibility of 
easy sampling from the underlying random 
vectors (X1,…,Xn) (n = 2,3,…) which for large 
n approximate the processes. For that this is 
enough to transform any sample from random 
vectors (T1,…,Tn) of independent variables 
having some typical distribution. Such samples 
are, in general, at hand. This may open ways 
for simulation procedures and modelling. 

6. As mentioned in the chapter, triangular trans-
formations form algebraic groups with unity, 
with respect to their composition. This is worth 
to notice a theoretical fact that, for each n = 
2,3,… the group operation (here the composi-
tion) induces a binary operation in sets of prob-
ability densities, say g(x1,…,xn) of the output 
random vectors (X1,…,Xn). Recall, sequences 
of these densities determine the constructed 
processes. Nice fact about it is that the groups 
of the densities g(x1,…,xn) are isomorphic with 
corresponding groups of the transformations. 
More on the algebraic structure of the, here de-
fined, n-dimensional FF-normal densities (for 
all n ≥ 2) as well as more detailed theory of the 
finite dimensional pseudonormals) can be 
found in (Filus & Filus, 1999, 2001). It seems 
to be obvious that the above mentioned alge-
braic structure of the finite dimensional trian-
gular transformations and the corresponding 
FF-normal densities, described in (Filus & Fi-
lus 1999), can (easily) be extended to classes 
of infinitely dimensional R∞ à R∞ transfor-
mations and the corresponding classes of sto-
chastic processes with good memory. The 
propositions formulated in (Filus & Filus 
1999) can be extended to the infinite dimen-
sions as well. This problem, interesting on its 
own grounds, is of rather theoretical nature 
with no direct application to the here consid-
ered reliability and maintenance settings. 
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