Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With the rapid development of economic globalisation, global economic and trade activities are escalating. However, environmental problems and the emergence of green economy, a response to these problems, has led to the widespread introduction of green trade barriers. These barriers implicitly limit the development of trade activities. This paper focuses on the export difficulties caused by green trade barriers and proposes a method to quantify discrete product characteristics, explore the internal characteristics of commodities and decide optimally on intended export regions. Firstly, the discrete feature of products is quantified by quantitative transformation method. Secondly, the quantitative data are used to derive the best decision for export regions through support vector regression (SVR) method. Particle swarm optimisation is used in optimising SVR parameters to achieve high-precision decision making. Comparison with historical data from the industry park shows the identification accuracy of the optimised SVR model to be better than that of the traditional regression model. This finding presents a novel perspective for developing import and export under the background of green trade barriers.
Czasopismo
Rocznik
Tom
Strony
117--126
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
autor
- College of Foreign Language, Hubei University of Science and Technology, Xianning 437000 Hubei, China, ORCID: 0009-0001-3790-9053
autor
- Science and Technology Department, Xianning Vocational Technical College, Xianning 437000, Hubei, China
Bibliografia
- [1] Maggi G, Mrázová M, Neary JP. Int Economic Rev. 2022;63(1):161-88. DOI: 10.1111/iere.12533.
- [2] Li Z, Zhou X, Huang S. Int J Prod Economics. 2021;238:108166. DOI: 10.1016/j.ijpe.2021.108166.
- [3] Xu A, Song M, Xu S, Wang W. Technol Forecasting Social Change. 2024;200:123105. DOI: 10.1016/j.techfore.2023.123105.
- [4] Meng Y. J Chin Human Resources Manage. 2020;11(2):30-6. DOI: 10.47297/wspchrmWSP2040-800503.20201102.
- [5] Dhingra S, Freeman R, Huang H. Economica. 2023;90(357):140-77. DOI: 10.1111/ecca.12450.
- [6] Liu H, Lei H, Zhou Y. J Economic Anal. 2022;1(1):1-19. DOI: 10.58567/jea01010001.
- [7] Kong L, Wang L, Li F, Li J, Wang Y, Cai Z, et al. Energy Conv Manage. 2023;286:117069. DOI: 10.1016/j.enconman.2023.117069.
- [8] Li J, Zhang G, Ned JP, Sui L. Environ Sci Pollut Res. 2023;30(29):74141-52. DOI: 10.1007/s11356-023-27593-y.
- [9] Agrawal R, Agrawal S, Samadhiya A, Kumar A, Luthra S, Jain V. Geosci Front. 2023:101669. DOI: 10.1016/j.gsf.2023.101669.
- [10] Xu J, Liu Y, Yang L. Sustainability. 2018;10(5):1348. DOI: 10.3390/su10051348.
- [11] Wei G. Analysis of Environmental Barriers in International Trade. 3rd Int Conf Economics, Social Sci, Arts, Education Manage Eng (ESSAEME 2017). Atlantis Press; 2017. DOI: 10.2991/essaeme-17.2017.298.
- [12] Huang F, Wang Z, Huang X, Qian Y, Li Z, Chen H. Aligning Distillation for Cold-Start Item Recommendation. SIGIR '23. New York, NY, USA. 2023. DOI: 10.1145/3539618.3591732.
- [13] Luo J, Zhuo W, Xu B. Manage Decision. 2023. DOI: 10.1108/MD-03-2023-0325.
- [14] Ge F, Li Q, Nazir S. J Organizational End User Computing (JOEUC). 2023;35(1):1-14. DOI: 10.4018/JOEUC.333619.
- [15] Salman RA, Myeongbae L, Jonghyun L, Cho Y, Changsun S. J Organizational End User Computing (JOEUC). 2022;34(2):1-17. DOI: 10.4018/JOEUC.291559.
- [16] Zhao Y, Zhou Y. J Organizational End User Computing (JOEUC). 2022;34(3):1-17. DOI: 10.4018/JOEUC.20220501.oa1.
- [17] Yang Y, Zhao W, Xue Y, Yang H, Wu C. Phys Fluids. 2023;35(6). DOI: 10.1063/5.0153970.
- [18] Block A, Dagan Y, Golowich N, Rakhlin A. Conf Learning Theory. PMLR. 2022:1716-86. DOI: 10.48550/arXiv.2202.04690.
- [19] Xu Y, Wang E, Yang Y, Chang Y. IEEE Trans Knowledge Data Eng. 2022;34(11):5126-39. DOI: 10.1109/TKDE.2021.3054782.
- [20] Li X, Sun Y. Neural Computing Appl. 2021;33(14):8227-35. DOI: 10.1007/s00521-020-04958-9.
- [21] Lisboa P, Etchells TA, Jarman IH, Arsene CT, Hane MS, Eleuteri A, et al. IEEE Trans Neural Networks. 2009;20(9):1403-16. DOI: 10.1109/TNN.2009.2023654.
- [22] Marcano-Cedeño A, Marin-de-la-Barcena A, Jimenez-Trillo J, Piñuela JA, Andina D. Int J Neural Systems. 2011;21(4):311-7. DOI: 10.1142/S0129065711002857.
- [23] Gao H, Liu Z, Yang CC. J Empirical Finance. 2023;73:349-68. DOI: 10.1016/j.jempfin.2023.08.001.
- [24] Luo J, Zhuo W, Xu B. J Circuits, Systems Computers. 2023. DOI: 10.1142/S0218126624501536.
- [25] Silva Barbosa T. Kronbauer AH. 21st Symp Virtual Augmented Reality (SVR), 2019:69-76. DOI: 10.1109/SVR.2019.00027.
- [26] Zheng W, Yin L. Peer J Computer Sci. 2022. DOI: 10.7717/peerj-cs.908.
- [27] Wu H, Jin S, Yue W. J Systems Sci Systems Eng. 2022;31(2):133-49. DOI: 10.1007/s11518-022-5521-0.
- [28] Rokbani N, Abraham A, Alimi AM. 13th Int Conf Hybrid Intelligent Systems. 2013:251-5. DOI: 10.1109/HIS.2013.6920491.
- [29] Kefi S, Rokbani N, Krömer P, Alimi AM. IEEE Int Conf Systems, Man, Cybernetics (SMC). 2016:004866-004871. DOI: 10.1109/SMC.2016.7844999.
- [30] Lalji SM, Khan MA, Haneef J, Ali SI, Arain AH, Shah A. Appl Nanosci. 2023;13(1):503-17. DOI: 10.1007/s13204-021-01825-4.
- [31] Swan NB, Zaini MAA. Ecol Chem Eng S. 2019;26(1):119-32. DOI: 10.1515/eces-2019-0009.
- [32] Wu CH, Tsai SB, Liu W, Shao XF, Xia YK, Wacławek M. Ecol Chem Eng S. 2022;28(4):467-70. DOI: 10.2478/eces-2021-0030.
- [33] Liu W, Tsai SB, Wu CH, Shao X, Wacławek M. Ecol Chem Eng S. 2022;29(3):283-5. DOI: 10.2478/eces-2022-0020.
- [34] Zhao JX. Ecol Chem Eng S. 2023;30(2):259-66. DOI: 10.2478/eces-2023-0027.
- [35] Ji Y, Xu K, Zeng P, Zhang W. IEEE J Selected Topics Appl Earth Observations Remote Sensing. 2021;14:6585-95. DOI: 10.1109/JSTARS.2021.3089151.
- [36] Du Q, Yu L, Li C. China Int Conf Electricity Distribution (CICED). DOI: 10.1109/CICED.2016.7576010.
- [37] Xu J, Liu Y, Yang L. Sustainability. 2018;10(5):1348. DOI: 10.3390/su10051348.
- [38] Khoi NV, Thuy LTT. Int J Diplomacy Economy. 2013;1(3-4):309-28. DOI: 10.1504/IJDIPE.2013.056994.
- [39] Xu A, Qiu K, Zhu Y. J Business Res. 2023;157:113556. DOI: 10.1016/j.jbusres.2022.113556.
- [40] Wu B, Gu Q, Liu Z, Liu J. Technol Forecasting Social Change. 2023;194:122676. DOI: 10.1016/j.techfore.2023.122676.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea8d3226-1783-4ac1-a0ae-e1fb26e0720f