PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Storage systems for solar energy suitable for agriculture. Part one: thermal energy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The solar energy reaching our planet is much greater than our civilisation needs. The main obstacle on the way to its wider use is high variability. This fact determines the need to provide a way to store the energy for the time when the Sun is not shining over particular region or the radiation is not sufficient. The paper presents various ways to accumulate the energy in the thermal form: sensible and latent heat, chemical/sorption, which are suitable for use in agriculture or rural areas. Along with the basic presentation, the most recent developments in each area are presented.
Słowa kluczowe
Twórcy
autor
  • Department of Technology Fundamentals, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
Bibliografia
  • 1. Abedin A. H., Rosen M. A. 2011. A Critical Review of Thermochemical Energy Storage Systems. Open Renew. Energy J. 4(1), 42–46.
  • 2. Ahmed S. F., Khalid M., Rashmi W., Chan A., Shahbaz K., 2017. Recent progress in solar thermal energy storage using nanomaterials. Renew. Sustain. Energy Rev. 67, 450–60.
  • 3. Aktaş M., Şevik S., Amini A., Khanlari A., 2016. Analysis of drying of melon in a solar-heat recovery assisted infrared dryer. Sol. Energy. 137, 500–515.
  • 4. André L., Abanades S., Flamant G., 2016. Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage. Renew. Sustain. Energy Rev. 64, 703–15.
  • 5. Bal LM., Satya S., Naik SN., Meda V. 2011. Review of solar dryers with latent heat storage systems for agricultural products. Renew. Sustain. Energy Rev. 15(1), 876–80.
  • 6. Benli H., Durmuş A., 2009. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Sol. Energy. 83(12), 2109–19.
  • 7. Çakmak G., Yıldız C., 2011. The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food Bioprod. Process. 89(2), 103–8.
  • 8. Dashtban M., Tabrizi F. F., 2011. Thermal analysis of a weir-type cascade solar still integrated with PCM storage. Desalination. 279(1–3), 415–22.
  • 9. Deshmukh H., Maiya M. P., Srinivasa Murthy S., Study of sorption based energy storage system with silica gel for heating application. Appl. Therm. Eng.
  • 10. Deutsch M., Müller D., Aumeyr C., Jordan C., Gierl-Mayer C., et al. 2016. Systematic search algorithm for potential thermochemical energy storage systems. Appl. Energy. 183, 113–20.
  • 11. Devahastin S., Pitaksuriyarat S., 2006. Use of latent heat storage to conserve energy during drying and its effect on drying kinetics of a food product. Appl. Therm. Eng. 26(14–15), 1705–13.
  • 12. DeVries T. J., Aarnoudse M. G., Barkema H. W., Leslie K. E., von Keyserlingk M. A. G., 2012. Associations of dairy cow behavior, barn hygiene, cow hygiene, and risk of elevated somatic cell count. J. Dairy Sci. 95(10), 5730–39.
  • 13. Duffie J. A, Beckman W. A., 2013. Solar Engineering of Thermal Processes: Duffie/Solar Engineering 4e. Hoboken, NJ, USA: John Wiley & Sons, Inc.
  • 14. El-Bahloul A. A. M., Ali A. H. H., Ookawara S., 2015. Performance and Sizing of Solar Driven dc Motor Vapor Compression Refrigerator with Thermal Storage in Hot Arid Remote Areas. Energy Procedia. 70, 634–43.
  • 15. Elsayed A., Elsayed E., AL-Dadah R., Mahmoud S., Elshaer A., Kaialy W., Thermal energy storage using metal–organic framework materials. Appl. Energy.
  • 16. Floros M. C., Kaller K. L. C., Poopalam K. D., Narine S. S., 2016. Lipid derived diamide phase change materials for high temperature thermal energy storage. Sol. Energy. 139, 23–28.
  • 17. Ghasemi Mobtaker H., Ajabshirchi Y., Ranjbar S. F., Matloobi M., 2016. Solar energy conservation in greenhouse: Thermal analysis and experimental validation. Renew. Energy. 96, Part A, 509–19.
  • 18. Gulcimen F., Karakaya H., Durmus A., 2016. Drying of sweet basil with solar air collectors. Renew. Energy. 93, 77–86.
  • 19. Henninger S. K., Schmidt F. P., Henning H. M., 2010. Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30(13), 1692–1702.
  • 20. Herzog T. H., Jänchen J., Kontogeorgopoulos E.M., Lutz W., 2014. Steamed Zeolites for Heat Pump Applications and Solar Driven Thermal Adsorption Storage. Energy Procedia. 48, 380–83.
  • 21. Islam M. M., Pandey A. K., Hasanuzzaman M., Rahim N. A. 2016. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems. Energy Convers. Manag. 126, 177–204.
  • 22. Islam M. P., Morimoto T., 2016. Thermodynamic performances of a solar driven adsorption system. Sol. Energy. 139, 266–77.
  • 23. Jain D., Tewari P., 2015. Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage. Renew. Energy. 80, 244–50.
  • 24. Johannes K., Kuznik F., Hubert J-L., Durier F., Obrecht C., 2015. Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Appl. Energy. 159, 80–86.
  • 25. Josefsen M. H., Bhunia A. K., Engvall E. O., Fachmann M. S. R., Hoorfar J., 2015. Monitoring Campylobacter in the poultry production chain — From culture to genes and beyond. J. Microbiol. Methods. 112, 118–25.
  • 26. Kalaiarasi G., Velraj R., Swami M.V., 2016. Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage. Energy. 111, 609–19.
  • 27. Kalogirou S. A., 2004. Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30(3), 231–95.
  • 28. Kant K., Shukla A., Sharma A., Kumar A., Jain A., 2016. Thermal energy storage based solar drying systems: A review. Innov. Food Sci. Emerg. Technol. 34, 86–99.
  • 29. Kapica J., Pawlak H., Ścibisz M., 2015. Carbon dioxide emission reduction by heating poultry houses from renewable energy sources in Central Europe. Agric. Syst. 139, 238–49.
  • 30. Kapsalis V., Karamanis D., 2016. Solar thermal energy storage and heat pumps with phase change materials. Appl. Therm. Eng. 99, 1212–24.
  • 31. Klein S. A., Beckman W. A., Duffie J. A., 1976. A design procedure for solar heating systems. Sol. Energy. 18(2), 113–27.
  • 32. Klemeš J., Smith R., Kim J-K., 18.7 Heat/Cold Storage (or Thermal Energy Storage - TES). In Handbook of Water and Energy Management in Food Processing. Woodhead Publishing.
  • 33. Kürklü A., Bilgin S., Özkan B., 2003. A study on the solar energy storing rock-bed to heat a polyethylene tunnel type greenhouse. Renew. Energy. 28(5), 683–97.
  • 34. Kürklü A., Özmerzi A., Wheldon A. E., Hadley P., 1997. Use of a phase change material (PCM) for the reduction of peak temperatures in a model greenhouse.
  • 35. Lewis N. S., 2007. Toward Cost-Effective Solar Energy Use. Science. 315(5813), 798–801.
  • 36. Li G. 2016. Sensible heat thermal storage energy and exergy performance evaluations. Renew. Sustain. Energy Rev. 53, 897–923.
  • 37. Li M., Xu C., Hassanien R. H. E., Xu Y., Zhuang B., 2016. Experimental investigation on the performance of a solar powered lithium bromide–water absorption cooling system. Int. J. Refrig. 71, 46–59.
  • 38. Marucci A., Cappuccini A., 2016. Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions. Appl. Energy. 170, 362–76.
  • 39. Mawire A., 2016. Performance of Sunflower Oil as a sensible heat storage medium for domestic applications. J. Energy Storage. 5, 1–9.
  • 40. Mehling H., Cabeza L. F., Hippeli S., Hiebler S., 2003. PCM-module to improve hot water heat stores with stratification. Renew. Energy. 28(5), 699–711.
  • 41. Misha S., Mat S., Ruslan M. H., Salleh E., Sopian K., 2016. Performance of a solar-assisted solid desiccant dryer for oil palm fronds drying. Sol. Energy. 132, 415–29.
  • 42. Modirrousta S., Boostani H., 2016. Analysis of Atrium Pattern, Trombe Wall and Solar Greenhouse on Energy Efficiency. Procedia Eng. 145, 1549–56.
  • 43. Mun H-S., Ahmed S. T., Islam M. M., Park K-J., Yang C-J., 2015. Retrofitting of a pig nursery with solar heating system to evaluate its ability to save energy and reduce environmental pollution. Eng. Agric. Environ. Food. 8(4), 235–40.
  • 44. Nacer T., Hamidat A., Nadjemi O., Bey M., 2016. Feasibility study of grid connected photovoltaic system in family farms for electricity generation in rural areas. Renew. Energy. 96, Part A, 305–18.
  • 45. Najjar A., Hasan A., 2008. Modeling of greenhouse with PCM energy storage. Energy Convers. Manag. 49(11), 3338–42.
  • 46. Nookuea W., Campana P. E., Yan J., 2016. Evaluation of Solar PV and Wind Alternatives for Self Renewable Energy Supply: Case Study of Shrimp Cultivation. Energy Procedia. 88, 462–69.
  • 47. N’Tsoukpoe K. E., Osterland T., Opel O., Ruck W. K. L., 2016. Cascade thermochemical storage with internal condensation heat recovery for better energy and exergy efficiencies. Appl. Energy. 181, 562–74.
  • 48. Omu A., Hsieh S., Orehounig K., 2016. Mixed integer linear programming for the design of solar thermal energy systems with short-term storage. Appl. Energy. 180, 313–26.
  • 49. Pérez-Page M., Makel J., Guan K., Zhang S., Tringe J., et al. 2016. Gas adsorption properties of ZSM-5 zeolites heated to extreme temperatures. Ceram. Int. 42(14), 15423–31.
  • 50. Pielichowska K., Pielichowski K., 2014. Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67–123.
  • 51. Pinheiro J. M., Salústio S., Rocha J., Valente A. A., Silva C. M., 2016. Analysis of equilibrium and kinetic parameters of water adsorption heating systems for different porous metal/metalloid oxide adsorbents. Appl. Therm. Eng. 100, 215–26.
  • 52. Rao C. N. R., Dey S., 2016. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides. J. Solid State Chem. 242, Part 2, 107–15.
  • 53. Rhee J., Campbell A., Mariadass A., Morhous B., 2010. Temperature stratification from thermal diodes in solar hot water storage tank. Sol. Energy. 84(3), 507–11.
  • 54. Rodríguez-Hidalgo M. C., Rodríguez-Aumente P.A., Lecuona A., Legrand M., Ventas R., 2012. Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank. Appl. Energy. 97, 897–906.
  • 55. Sang W. H, Lee Y. T., Chung J. D., Kim S. T., Kim T., et al. 2016. Efficient numerical approach for simulating a full scale vertical ice-on-coil type latent thermal storage tank. Int. Commun. Heat Mass Transf. 78, 29–38.
  • 56. Shalaby S. M., Bek M. A., El-Sebaii A. A., 2014. Solar dryers with PCM as energy storage medium: A review. Renew. Sustain. Energy Rev. 33, 110–16.
  • 57. Sharma S. D, Buddhi D., Sawhney R. L., 1999. Accelerated thermal cycle test of latent heat-storage materials. Sol. Energy. 66(6), 483–90.
  • 58. Shukla R., Sumathy K., Erickson R., Gong J., 2013. Recent advances in the solar water heating systems: A review. Renew. Sustain. Energy Rev. 19, 173–90.
  • 59. Sontake VC., Kalamkar VR. 2016. Solar photovoltaic water pumping system - A comprehensive review. Renew. Sustain. Energy Rev. 59, 1038–67.
  • 60. Sumathy K., Yeung K. H., Yong L., 2003. Technology development in the solar adsorption refrigeration systems. Prog. Energy Combust. Sci. 29(4), 301–27.
  • 61. Tamasauskas J., Poirier M., Zmeureanu R., Sunyé R., 2012. Modeling and optimization of a solar assisted heat pump using ice slurry as a latent storage material. Sol. Energy. 86(11), 3316–25.
  • 62. Tamvakidis S., Firfiris V. K., Martzopoulou A., Fragos V. P., Kotsopoulos T. A., 2015. Performance evaluation of a hybrid solar heating system for farrowing houses. Energy Build. 97, 162–74.
  • 63. Tian Y., Zhao C. Y., 2013. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy. 104, 538–53.
  • 64. Vijayan S., Arjunan T. V., Kumar A., 2016. Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innov. Food Sci. Emerg. Technol. 36, 59–67.
  • 65. Whiting G. T., Grondin D., Stosic D., Bennici S., Auroux A., 2014. Zeolite–MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption. Sol. Energy Mater. Sol. Cells. 128, 289–95.
  • 66. Wlazło Ł, Nowakowicz-Dębek B., Kapica J., Kwiecień M., Pawlak H., 2016. Removal of ammonia from poultry manure by aluminosilicates. J. Environ. Manage. 183, Part 3, 722–25.
  • 67. Yu N., Wang R. Z., Wang L. W., 2013. Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39(5), 489–514.
  • 68. Zalba B., Marı́n J. M., Cabeza L. F., Mehling H., 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–83.
  • 69. Zhang B., Fan X., Liu M., Hao W., 2016. Experimental study of the burning-cave hot water soil heating system in solar greenhouse. Renew. Energy. 87, Part 3, 1113–20.
  • 70. Ziaforoughi A., Esfahani J. A., 2016. A salient reduction of energy consumption and drying time in a novel PV-solar collector-assisted intermittent infrared dryer. Sol. Energy. 136, 428–36.
  • 71. Ziapour B. M., Hashtroudi A., 2017. Performance study of an enhanced solar greenhouse combined with the phase change material using genetic algorithm optimization method. Appl. Therm. Eng. 110, 253–64.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea7f3768-7e03-4c6e-acee-d793148932a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.