PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparison of the statistical distributions of air pollution concentrations in Sinop, Turkey

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing population and industrialization are the reasons for environmental and air pollution around the world. Air pollution is a major threat, especially to human health, both biological and economic. Therefore, determining the properties of air pollutants is very important for researchers and practitioners working in this field. In this study, the statistical distributions of some air pollutants are determined using the Gumbel, Weibull, generalized Pareto, log-normal, gamma, Rayleigh, and inverse Weibull distributions. The data was obtained from stations Boyabat and Merkez stations in Sinop province in 2017. The Kolmogorov–Smirnov test was used to determine the underlying distributions of the air pollution data. Then we use the root mean square error and coefficient of determination criteria to determine which distribution better fits the air pollution data. Finally, numerical results have shown that the generalized Pareto distribution demonstrates the best overall modeling performance, followed by log-normal and inverse Weibull distributions.
Rocznik
Strony
47--68
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Department of Statistics, Sinop University, Korucuk Neighborhood, Trafo Street, Sinop 57000, Turkey
Bibliografia
  • [1] AKAIKE H., Information theory and an extension of the maximum likelihood principle, [In:] B.N. Petrov, F. Caski (Eds.), Proc. Second International Symposium on Information Theory, Akademiai Kiado, Budapest 1973, 267–281.
  • [2] AKGÜL F.G., ŞENOĞLU B., ARSLAN T., An alternative distribution to Weibull for modeling the wind speed data. Inverse Weibull distribution, En. Conv. Manage., 2016, 114, 234–240. DOI: 10.1016/j. enconman.2016.02.026.
  • [3] AKGÜL F.G., ŞENOĞLU B., Comparison of wind speed distributions. A case study for Aegean coast of Turkey, En. Sourc., A. Rec., Util. Environ. Eff., 2023, 45 (1), 2453–2470. DOI: 10.1080/15567036. 2019.1663309.
  • [4] EL-SHANSHOURY G.I., Fitting the probability distribution functions to model particulate matter concentrations, Arab J. Nucl. Sci. Appl., 2017, 50, 108–122.
  • [5] GAVRIIL I., GRIVAS G., KASSOMENOS P., CHALOULAKOU A., SPYRELLIS N., An application of theoretical probability distributions, to the study of PM10 and PM2.5 time series in Athens, Greece, Glob. NEST J., 2006, 8 (3), 241–251.
  • [6] GOKHALE S., KHARE M., A review of deterministic, stochastic and hybrid vehicular exhaust emission models, Int. J. Trans. Manage., 2004, 2 (2), 59–74. DOI: 10.1016/j.ijtm.2004.09.001.
  • [7] GULIA S., NAGENDRA S.S., KHARE M., Extreme events of reactive ambient air pollutants and their distribution pattern at urban hotspots, Aerosol Air Qual. Res., 2017, 17 (2), 394–405. DOI: 10.4209 /aaqr.2016.06.0273.
  • [8] HADLEY A., TOUMI R., Assessing changes to the probability distribution of sulphur dioxide in the UK using lognormal model, Atmos. Environ., 2002, 37 (24), 455–467. DOI: 10.1016/S1352-2310 (02)01003-8.
  • [9] HERD G.R., Estimation of reliability from incomplete data, Proc. 6th National Symposium on Reliability and Quality Control, IEEE, New York 1960.
  • [10] KAN H.D., CHEN B.H., Statistical distributions of ambient air pollutants in Shanghai, China, Biomed. Environ. Sci., 2004, 17 (3), 366–372.
  • [11] KARA N.O., Air pollution in Istanbul, Netherlands Enterprise Agency, The Hague 2018.
  • [12] JOHNSON L.G., The statistical treatment of fatigue experiments, Elsevier, New York 1964.
  • [13] LEIVA V., VILCA F., BALAKRISHNAN N., SANHUEZA A., A skewed sinh-normal distribution and its properties and application to air pollution, Commun. Stat.-Theor. M., 2010, 39 (3), 426–443. DOI: 10.1080 /03610920903140171.
  • [14] LU H.C., The statistical characters of PM10 concentration in Taiwan area, Atmos. Environ., 2002, 36 (3), 491–502. DOI: 10.1016/S1352-2310 (01)00245-X.
  • [15] LU H.C., Comparisons of statistical characteristic of air pollutants in Taiwan by frequency distribution, Air, Waste Manage. Assoc., 2003, 53 (5), 608–616. DOI: 10.1080/10473289.2003.10466194.
  • [16] NOOR N.M., TAN C.Y., ABDULLAH M.M.A.B., RAMLI N.A., YAHAYA A.S., Modelling of PM10 concentration in industrialized area in Malaysia. A case study in Nilai, [In:] International Conference on Environment and Industrial Innovation IPCBEE, 2011, 12, 48–58.
  • [17] OGUNTUNDE P.E., ODETUNMIBI O.A., ADEJUMO A.O., A study of probability models in monitoring environmental pollution in Nigeria, J. Prob. Stat., 2014, 1–6. DOI: 10.1155/2014/864965.
  • [18] OTT W.R., MAGE D.T., RANDERCKER V.W., Testing the validity of the lognormal probability model: computer analysis of carbon monoxide data from US cities, EPA 600/4-79-040, US Environmental Protection Agency, Research Triangle Park, NC, 1979.
  • [19] PAPANASTASIOU D.K., MELAS D., Application of PM10’s statistical distribution to air quality management. A case study in Central Greece, Water Air Soil Poll., 2010, 207, 115–122. DOI: 10.1007/s11270 -009-0123-8.
  • [20] PRIETO W., CREMASCO M., Application of probability density functions in modelling annual data of atmospheric NOx temporal concentration, Chem. Eng. Trans., 2017, 57, 487–492. DOI: 10.3303/CET1757082.
  • [21] RUMBERG B., ALLDREDGE R., CLAIBORN C., Statistical distributions of particulate matter and the error associated with sampling frequency, Atmos. Environ., 2001, 35, 2907–2920. DOI: 10.1016/S1352-2310 (00)00554-9.
  • [22] SIMPSON R.W., DALY N.J., JAKEMAN A.J., The prediction of maximum air pollution concentrations for TSP and CO Larsen’s model and the ATDL model, Atmos. Environ., 1983, 17, 2497–2503. DOI: 10.1016 /0004-6981 (83)90075-6.
  • [23] SINGH P., Simultaneous confidence intervals for the successive ratios of scale parameters, J. Stat. Plan. Inf., 2004, 36 (3), 1007–1019. DOI: 10.1016/j.jspi.2004.08.006.
  • [24] SCHWARZ G., Estimating the dimension of a model, Ann. Stat., 1978, 6 (2), 461–464.
  • [25] SWAIN J., VENKATRAMAN S., WILSON J., Least-squares estimation of distribution function in Johnson’s translation system, J. Stat. Comp. Simul., 1988, 29, 271–297. DOI: 10.1080/00949658808811068.
  • [26] SOUZA A., OLAOFE Z., KODICHERLA S.P.K., IKEFUTI P., NOBREGA L., SABBAH I., Probability distributions assessment for modeling gas concentration in Campo Grande, MS, Brazil, Eur. Chem. Bull., 2018, 6 (12), 569–578. DOI: 10.17628/ecb.2017.6.569–578.
  • [27] WANG X., MAUZERALL D.L., Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020, Atmos. Environ., 2004, 38 (74), 4383–4402. DOI: 10.1016/j.atmosenv.2004.03.067.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea7ce328-b306-4dfc-b955-b0b6d68c56ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.