Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper deals with some aspects of formulation and implementation of a broadband algorithm with build-in analysis of some dispersive media. The construction of the finite element method (FEM) based on direct integration of Maxwell’s equations and solution of some additional convolution integrals is presented. The broadband, fractional model of permittivity is approximated by a set of some relaxation sub-models. The properties of the 3D time-dependent formulation of the FEM algorithm are determined using a benchmark problem with the Cole-Cole and the Davidson-Cole models. Several issues associated with the implementation and some constraints of the broadband finite element algorithm are presented.
Czasopismo
Rocznik
Tom
Strony
719--732
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wz.
Twórcy
autor
- Faculty of Electrical Engineering, Bialystok University of Technology ul. Wiejska 45d, 15-351 Białystok, Poland
Bibliografia
- [1] Lee W.-J., Kim C.-G., Electromagnetic wave absorbing composites with a square patterned conducting polymer layer for wide band characteristics, Shock and Vibration, no. 1, pp. 1-5 (2014).
- [2] Taya M., Electronic composites, Cambridge University Press (2005).
- [3] Fourn C., Lasquellec S., Brosseau C., Finite-element modeling method for the study of dielectric relaxation at high frequencies of heterostructures made of multilayered particle, Journal of Applied Physics, vol. 102, no. 12, pp. 124107-11 (2007).
- [4] Kalmykov Y.P., Coffey W.T., Crothers D.S.F., Titov S.V., Microscopic models for dielectric relaxation in disordered systems, Physics Review, serie E, vol. 70, no. 4, pp. 041-103 (2004).
- [5] Raju G.G., Dielectrics in electric fields, CRC Press (2003).
- [6] Butryło B., Parallel computations of electromagnetic fields in models with dispersive materials (in Polish), Bialystok University of Technology (2012).
- [7] Charef A., Modeling and analog realization of the fundamental linear fractional order differential equation, Nonlinear Dynamics, vol. 46, pp. 195-210 (2006).
- [8] Rao S.M., Time domain electromagnetics. Academic Press (1999).
- [9] Oughstun K.E., Electromagnetic and optical pulse propagation, Springer (2006).
- [10] Young J.L., Nelson R.O., A summary and systematic analysis of FDTD algorithms for linearly dispersive media, IEEE Antennas and Propagation Magazine, vol. 43, no. 1, pp. 61-77 (2001).
- [11] Ramadan O., Unconditionally stable split-step finite difference time domain formulations for double-dispersive electromagnetic materials, Computer Physics Communications, vol. 185, no. 12, pp. 3094-3098 (2014).
- [12] Causley M.F., Petropoulos P.G., On the time-domain response of Havriliak-Negami dielectrics, IEEE Transactions on Antennas and Propagation, vol. 61, no. 6, pp. 3182-3189 (2013).
- [13] Maradei F., A frequency-dependent WETD formulation for dispersive materials, IEEE Transactions on Magnetics, vol. 37, no. 5, pp. 3303-3306 (2001).
- [14] Stoykov N.S., Kuiken T.A., Lowery M.M., Taflove A., Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies, IEEE Transactions on Biomedical Engineering, vol. 50, no. 9, pp. 1100-1107 (2003).
- [15] Monk P., Finite element methods for Maxwell's equations, Oxford University Press (2003).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea7c0137-8a09-4e51-9466-cb9d8893ef5f