Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work the nickel-based coatings were obtained by electroless catalytic deposition on light-hardened resins dedicated for 3D printing by SLA method. The effect of external magnetic field application on the properties of nickel-based coatings was determined. During metallization, the magnetic field was applied to the sample’s surface with different orientations. Due to the magnetic properties of metallic ions, the influence of the magnetic field on coatings properties is expected. The coatings were analyzed by Energy-dispersive X-ray spectroscopy (EDS) the X-Ray diffraction (XRD) methods, and surface morphology was observed by scanning electron microscopy (SEM). The catalytic properties in a hydrogen evolution reaction (HER) were measured by electrochemical method in 1 M NaOH solution. The best catalytic activity has been observed in the case of the ternary Ni-Fe-P alloy deposited under a parallel magnetic field. The primary outcome of the presented research is to produce elements based on 3D printing from resins, which can then be metallized and used for highly-active materials deposited on complex 3D models. Furthermore, these elements can be used as low-cost, highly-developed sensors and catalysts for various chemical processes.
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--24
Opis fizyczny
Bibliogr. 53 poz., fot., rys., tab.
Twórcy
- AGH University of Krakow, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Krakow, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Krakow, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Krakow, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Krakow, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] M. Jiménez, l. Romero, I.A. Dom, M. Dom, Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity 2019, 9656938 (2019). DOI: https://doi.org/10.1155/2019/9656938
- [2] K.V. Wong, A. Hernandez, A Review of Additive Manufacturing. ISRN Mechanical Engineering 2012, 208760 (2012). DOI: https://doi.org/10.5402/2012/208760
- [3] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 60, 677-688 (2017). DOI: https://doi.org/10.1016/j.bushor.2017.05.011
- [4] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing ): A review of materials, methods, applications and challenges. Compos. Part B 143, 172-196 (2018). DOI: https://doi.org/10.1016/j.compositesb.2018.02.012
- [5] B. Derby, Additive Manufacture of ceramics components by Inkjet Printing. Engineering 1, 113-123 (2015). DOI: https://doi.org/10.15302/J-ENG-2015014
- [6] J.C. Jackson, J.F.C. Windmill, 3D-printing polymer-based permanent magnets, Mater. Des. 153, 120-128 (2018). DOI: https://doi.org/10.1016/j.matdes.2018.05.005
- [7] O. Ergeneman, C. Peters, M.R. Gullo, L. Jacot-Descombes, S. Gervasoni, B. Özkale, P. Fatio, V.J. Cadarso, M. Mastrangeli, S. Pané, et al., Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy. Nanoscale 6, 10495-10499 (2014). DOI: https://doi.org/doi:10.1039/c3nr06442e
- [8] J. Sudagar, J. Lian, W. Sha, Electroless nickel, alloy, composite and nano coatings - A critical review. J. Alloys Compd. 571, 183-204 (2013). DOI: https://doi.org/10.1016/j.jallcom.2013.03.107
- [9] J.N. Balaraju, T.S.N. Sankara Narayanan, S.K. Seshadri, Electroless Ni-P composite coatings. Journal of Applied Electrochemistry 33, 807-816 (2003).
- [10] R.A. Shakoor, R. Kahraman, W. Gao, Y. Wang, Synthesis, characterization and applications of electroless Ni-B coatings - A review. International Journal of Electrochemical Science 11, 2486-2512 (2016).
- [11] M. Żenkiewicz, K. Moraczewski, P. Rytlewski, M. Stepczyńska, B. Jagodziński, Electroless metallization of polymers. Archives of Materials Science and Engineering 74, 67-76 (2015).
- [12] C.A. Loto, Electroless Nickel Plating - A Review, Silicon 8, 177-186 (2016). DOI: https://doi.org/10.1007/s12633-015-9367-7
- [13] K. Kolczyk, W. Zborowski, D. Kutyla, A. Kwiecinska, R. Kowalik, P. Zabinski, Investigation of two-step metallization process of plastic 3D prints fabricated by sla method. Arch. Met. Mater. 63, 1031-1036 (2018). DOI: https://doi.org/10.24425/122438
- [14] M. Crobu, A. Scorciapino, B. Elsener, A. Rossi, The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys, Electrochim. Acta 53, 3364-3370 (2008). DOI: https://doi.org/10.1016/j.electacta.2007.11.071
- [15] S. Bogdach, D. Przybylska, Poradnik galwanotechnika: galwaniczne pokrywanie tworzyw sztucznych, 2002 WNT (Wydawnictwa Naukowo-Techniczne).
- [16] A. Farzaneh, M. Ehteshamzadeh, A.J. Cobley, Modelling of surfactants and chemistry for electroless Ni-P plating. Surf. Eng. 34, 454-461 (2017). DOI: https://doi.org/10.1080/02670844.2017.1287621
- [17] J.K. Pancrecious, S.B. Ulaeto, R. Ramya, T.P.D. Rajan, B.C. Pai, Metallic composite coatings by electroless technique - A critical Review. Int. Mater. Rev. 488-512 (2018). DOI: https://doi.org/10.1080/09506608.2018.1506692
- [18] M. Moniruzzaman, S. Roy, Effect of pH on electroless ni-p coating of conductive and non-conductive materials. Int. J. Automot. Mech. Eng. 4, 481-489 (2011).
- [19] X. Wang, W. Cai, W. Wang, H. Liu, Z. Yu, Effects of ligands on electroless Ni-P alloy plating from alkaline citrate - ammonia solution. Surf. Coatings Technol. 168, 300-306 (2003).
- [20] H. Ashassi-Sorkhabi, S.H. Rafizadeh, Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits. Surf. Coatings Technol. 176, 318-326 (2004). DOI: https://doi.org/10.1016/S0257-8972
- [21] A. Chakraborty, N.M. Nair, A. Adekar, P. Swaminathan, Templated electroless nickel deposition for patterning applications. Surf. Coat. Technol. 370, 106-112 (2019). DOI: https://doi.org/10.1016/j.surfcoat.2019.04.088
- [22] K. Kołczyk-Siedlecka, K. Skibińska, D. Kutyła, A. Kwiecińska, R. Kowalik, P. Żabiński, Influence of magnetic field on electroless metallization of 3D prints by copper and nickel. Arch. Metall. Mater. 64, 17-22 (2019). DOI: https://doi.org/10.24425/amm.2019.126212
- [23] J.A. Koza, M. Uhlemann, C. Mickel, A.Gebert, L. Schultz, The effect of magnetic field on the electrodeposition of CoFe alloys. J. Magn. Magn. Mater. 321, 2265-2268 (2009). DOI: https://doi.org/10.1016/j.jmmm.2009.01.036
- [24] A.M. Białostocka, U. Klekotka, B. Kalska-Szostko, Modulation of iron-nickel layers composition by an external magnetic field. Chem. Eng. Commun. 206, 804-814 (2019). DOI: https://doi.org/10.1080/00986445.2018.1528239
- [25] A.M. Białostocka, U. Klekotka, B. Kalska-Szostko, Author Correction: The Effect of a Substrate Material on Composition Gradients of Fe-Ni Films Obtained by Electrodeposition (Sci. Rep. 10, 1029 (2020). DOI: https://doi.org/10.1038/s41598-019-57363-1); Sci. Rep. 10, 1-8, 7679 (2020). DOI: https://doi.org/10.1038/s41598-020-64609-w
- [26] V.C. Long, U. Saraç, M.C. Baykul, L.D. Trong, S. Ţălu, D.N. Trong, Electrochemical Deposition of Fe-Co-Ni Samples with Different Co Contents and Characterization of Their Microstructural and Magnetic Properties. Coatings 12, (2022). DOI: https://doi.org/10.3390/coatings12030346
- [27] D. Li, Q. Wang, A. Franczak, A. Levesque, J.-P. Chopart, The Coupled Magnetic Field Effects on the Microstructure Evolution and Magnetic Properties of As-Deposited and Post-Annealed Nano-Scaled Co-Based Films - Part I, Electroplating of Nanostructures, 2015 Intech.
- [28] L.M.A. Monzon, J.M.D. Coey, Magnetic fields in electrochemistry: The Lorentz Force. A mini-review. Electrochem. Commun. 42, 38-41 (2014). DOI: https://doi.org/10.1016/j.elecom.2014.02.006
- [29] S. Luo, K. Elouarzaki, Z.J. Xu, Electrochemistry in Magnetic Fields. Angew. Chemie - Int. Ed. 61 (2022). DOI: https://doi.org/10.1002/anie.202203564
- [30] P. Zabiński, K. Mech, R. Kowalik, Co-Mo and Co-Mo-C alloys deposited in a magnetic field of high intensity and their electrocatalytic properties. Arch. Metall. Mater. 57, 127-133 (2012). DOI: https://doi.org/10.2478/v10172-012-0001-z
- [31] P. Zabiński, K. Mech, R. Kowalik, Electrocatalytically active Co-W and Co-W-C alloys electrodeposited in a magnetic field. Electrochim. Acta 104, 542-548 (2013). DOI: https://doi.org/10.1016/j.electacta.2012.11.047
- [32] Y. Yapontseva, V. Kublanovsky, T. Maltseva, O. Gorobets, R. Gerasimenko, Y. Troshchenkov, O. Vyshnevskyi, Effect of Magnetic Field on Electrodeposition and Properties of Cobalt Superalloys. J. Electrochem. Soc. 169, 062507 (2022). DOI: https://doi.org/10.1149/1945-7111/ac7898
- [33] J.A. Koza, M. Uhlemann, A. Gebert, L. Schultz, The effect of magnetic fields on the electrodeposition of CoFe alloys. Electrochim. Acta 53, 5344-5353 (2008). DOI: https://doi.org/10.1016/j.electacta.2008.02.082
- [34] J.A. Koza, M. Uhlemann, A. Gebert, L. Schultz, The effect of a magnetic field on the pH value in front of the electrode surface during the electrodeposition of Co, Fe and CoFe alloys. J. Electroanal. Chem. 617, 194-202 (2008). DOI: https://doi.org/10.1016/j.jelechem.2008.02.009
- [35] K. Kołczyk, M. Wojnicki, D. Kutyła, R. Kowalik, P. Zabiński, A. Cristofolini, Separation of Ho3+ in Static Magnetic Field. Arch. Metall. Mater. 61, 1919-1924 (2016). DOI: https://doi.org/10.1515/amm-2016-0308
- [36] K. Kolczyk-Siedlecka, M. Wojnicki, X. Yang, G. Mutschke, P. Zabinski, Experiments on the magnetic enrichment of rare-earth metal ions in aqueous solutions in a microflow device. J. Flowchem. 9, (2019). DOI: https://doi.org/10.1007/s41981-019-00039-8
- [37] K. Kolczyk, D. Kutyla, M. Wojnicki, A. Cristofolini, R. Kowalik, P. Zabinski, Separation of rare earth metals ions in a static magnetic field. Magnetohydrodynamics 52, 541-547 (2016).
- [38] K. Skibińska, D. Kutyła, K. Kołczyk-Siedlecka, M.M. Marzec, P. Żabiński, R. Kowalik, Synthesis of conical Co-Fe alloys structures obtained with crystal modifier in superimposed magnetic field. Arch. Civ. Mech. Eng. 21, 1-11 (2021). DOI: https://doi.org/10.1007/s43452-021-00315-2
- [39] M. Huang, K. Skibinska, P. Zabinski, M. Wojnicki, G. Włoch, K. Eckert, G. Mutschke, On the prospects of magnetic-field-assisted electrodeposition of nano-structured ferromagnetic layers. Electrochim. Acta 420, (2022). DOI: https://doi.org/10.1016/j.electacta.2022.140422
- [40] S. Mottaghian, M. Najafi, A. Abbas Rafati, S. Ali Asgharterohid, Structural, morphological, angular dependent of magnetic properties and FORC analysis of CoFeIn novel nanowire alloys. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 290, 116334 (2023). DOI: https://doi.org/10.1016/j.mseb.2023.116334
- [41] KMK Regulatory Services Inc Clear Photoreactive Resin for Formlabs 3D Printers Karta charakterystyki available online: https://sklep.3dl.tech/wp-content/uploads/2017/12/Clear_Form-labs-SDS-Eu-Polish.pdf (accessed on Jun 15, 2019).
- [42] A. Lelevic, F.C. Walsh, Electrodeposition of Ni-P alloy coatings: A review. Surf. Coatings Technol. 369, 198-220 (2019). DOI: https://doi.org/10.1016/j.surfcoat.2019.03.055
- [43] D.H. Jeong, U. Erb, K.T. Aust, G. Palumbo, The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni-P coatings. Scr. Mater. 48, 1067-1072 (2003). DOI: https://doi.org/10.1016/S1359-6462(02)00633-4
- [44] O’Reilly, G. Hinds, J.M.D. Coey, Effect of a Magnetic Field on Electrodeposition: Chronoamperometry of Ag, Cu, Zn, and Bi. J. Electrochem. Soc. 148, C674 (2001). DOI: https://doi.org/10.1149/1.1402121
- [45] Y. Yang, K.M. Grant, H.S. White, S. Chen, Magnetoelectrochemistry of Nitrothiophenolate-Functionalized Gold Nanoparticles. Langmuir 19, 9446-9449 (2003). DOI: https://doi.org/10.1021/la0345688
- [46] Y. Zhang, B. Yuan, L. Li, C. Wang, Edge electrodeposition effect of cobalt under an external magnetic field. J. Electroanal. Chem. 865, 114143 (2020). DOI: https://doi.org/10.1016/j.jelechem.2020.114143
- [47] J.P. Marton, M. Schlesinger, The Nucleation, Growth, and Structure of Thin Ni-P Films. J. Electrochem. Soc. 115, (1968). DOI: https://doi.org/10.1149/1.2410991
- [48] A.P. Gaikwad, A.M. Banerjee, M.R. Pai, R. Dheeman, S. Kumar, A.K. Tripathi, Synthesis, microstructure and electrochemical properties of Ni-P-based alloy coatings for hydrogen evolution reaction in alkaline media. Mater. Res. Express 10, (2023). DOI: https://doi.org/10.1088/2053-1591/acf278
- [49] S. Chouchane, A. Levesque, P. Zabinski, R. Rehamnia, J.-P. Chopart, Electrochemical corrosion behavior in NaCl medium of zinc-nickel alloys electrodeposited under applied magnetic field. J. Alloys Compd. 506, 575-580 (2010). DOI: https://doi.org/10.1016/j.jallcom.2010.07.099
- [50] O.V. Dolgikh, Y.G. Kravtsova, N.V. Sotskaya, The effect of composition of electrodeposited Ni-P alloys on the hydrogen evolution rate. Russ. J. Electrochem. 46, 918-924 (2010). DOI: https://doi.org/10.1134/S1023193510080094
- [51] J. Lian, Y. Wu, H. Zhang, S. Gu, Z. Zeng, X. Ye, One-step synthesis of amorphous Ni-Fe-P alloy as bifunctional electrocatalyst for overall water splitting in alkaline medium. Int. J. Hydrogen Energy 43, 12929-12938 (2018). DOI: https://doi.org/10.1016/j.ijhydene.2018.05.107
- [52] L. Krause, K. Skibińska, H. Rox, R. Baumann, M.M. Marzec, X. Yang, G. Mutschke, P. Żabiński, A.F. Lasagni, K. Eckert, Hydrogen Bubble Size Distribution on Nanostructured Ni Surfaces: Electrochemically Active Surface Area Versus Wettability. ACS Appl. Mater. Interfaces (2022). DOI: https://doi.org/10.1021/acsami.2c22231
- [53] R. Hannes, A. Bashkatov, X. Yang, S. Loos, G. Mutschke, G. Gerbeth, K. Eckert, Bubble size distribution and electrode coverage at porous nickel electrodes in a novel 3-electrode flow-through cell. Int. J. Hydrogen Energy 48, 2892-2905 (2023).
Uwagi
This research was funded by Polish National Science Centre, grant numer No UMO-2017/25/N/ST8/01721. The authors are grateful to Faculty of Non-Ferrous Metals for providing space and materials for research.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea696625-13ec-4b15-a018-d8de0257b622
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.