PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of Experimental Verification Methods of Gyrotron Quasi-optical Mode Converters

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This survey presents a review of experimental methods relied upon while implementing gyrotron higher mode generation techniques and performing near electromagnetic field measurements in launcher and quasi-optical mode converters. In particular, the paper focuses on low power (cold) testing of gyrotron quasi-optical mode converters outside of the gyrotron, without the presence of high electromagnetic power and electron beams.
Rocznik
Tom
Strony
75--85
Opis fizyczny
Bibliogr. 121 poz., rys.
Twórcy
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] J. W. Gewartowski and H. A. Watson, Principles of Electron Tubes. New Jersey: D. Van Nostrand, 1965 (ISBN: 9780442026509).
  • [2] A. S. Gilmour Jr, Microwave Tubes. Boston: Artech House, 1986 (ISBN: 9780890061817).
  • [3] S. Y. Liao, Microwave Electron Tubes. New Jersey: Prentice-Hall, 1988 (ISBN: 9780135820735).
  • [4] M. K. Alaria and A. K. Sinha, „Design and development of mode converter for 170 GHz gyrotron", Int. J. of Engin. and Innov. Technol. (IJEIT), vol. 6, no. 6, pp. 17-20, 2016 (DOI: 10.17605/OSF.IO/ERDXK).
  • [5] J.-W. Liu and Q. Zhao, „Research and design of the quasi-optical mode launcher for the gyrotron", J. of Infrared and Milim. Waves, vol. 34, no. 1, pp. 60-65 and 73, 2015 (DOI: 10.3724/SP.J.1010.2015.00060).
  • [6] V. Yadav et al., „Cold test of cylindrical open resonator for 42 GHz, 200 kW gyrotron", Sadhana, vol. 38, no. 6, pp. 1347-1356, 2013 (DOI: 10.1007/s12046-013-0156-y).
  • [7] P. J. Castro et al., „Cold tests of A 10-GHz gyrotron cavity", J. of Infrared and Milim. Waves, vol. 13, no. 1, pp. 91-104, 1992 (DOI: 10.1007/BF01011210).
  • [8] G. Dammertz, S. Alberti, A. Arnold, E. Giguet, Y. LeGoff, and M. Thumm, „Cold test measurements on components of the 1 MW, 140 GHz, CW gyrotron for the stellarator Wendelstein 7-X", Fusion Engin. Des., vol. 53, no. 1-4, pp. 561-569, 2001 (DOI: 10.1016/S0920-3796(00)00534-2).
  • [9] S. N. Vlasov and I. M. Orlova, „Quasioptical transformer chich transforms the waves in a waveguide having a circular cross section into a highly directional wave beam", Radiophys. and Quantum Electron., vol. 17, no. 1, pp. 115-119, 1974 (DOI: 10.1007/BF01037072).
  • [10] Z. H. Geng et al., „Simulation and measurement of a W-band circular TE62 mode generator for gyrotrons", in Proc. 18th Int. Vacuum Electron. Conf. IVEC 2017, London, UK, 2017 (DOI: 10.1109/IVEC.2017.8289613).
  • [11] S. G. Kim et al., „Cold testing of quasi-optical mode converters using a generator for non (DOI: 10.1063/1.4898180).
  • [12] N. L. Alexandrov, G. G. Denisov, D. R. Whaley, and M. Q. Tran, „Low power excitation of gyrotron type modes in a cylindrical waveguide using quasi-optical techniques", Int. J. of Electron., vol. 79, no. 2, pp. 215-226, 1995 (DOI: 10.1080/00207219508926263).
  • [13] I. Lee, D. J. Lee, and E. Choi, „In situ endoscopic observation of higher-order mode conversion in a microwave mode converter based on an electro-optic probe system", Opt. Express, vol. 22, no. 22, 2014 (DOI: 10.1364/OE.22.027542).
  • [14] W. Lawson, M. R. Arjona, B. P. Hogan, and R. L. Ives, „The design of serpentine-mode converters for high-power microwave applications", IEEE Trans. on Microw. Theory Tech., vol. 48, no. 5, pp. 809-814, 2000 (DOI: 10.1109/22.841875).
  • [15] D. Wagner, M. Thumm, and A. Arnold, „Mode generator for the cold test of step-tunable gyrotrons", in Proc. 27th Int. Conf. On Infrared and Milim. Waves, San Diego, CA, USA, 2002 (DOI: 10.1109/ICIMW.2002.1076205).
  • [16] T. H. Chang, C. H. Li, C. N. Wu, and C. F. Yu, „Exciting circular TE01 modes at low terahertz region", Appl. Phys. Lett., vol. 93, no. 11, 2008 (DOI: 10.1063/1.2987486).
  • [17] D. M. Pozar, Microwave Engineering, 4th ed. Wiley, 2011 (ISBN: 9780470631553).
  • [18] R. D. Wengenroth, „A mode transducing antenna", IEEE. Trans. on Microw. Theory and Tech., vol. 26, no. 5, pp. 332-334, 1978 (DOI: 10.1109/TMTT.1978.1129382).
  • [19] T. H. Chang, C. H. Li, C. N. Wu, and C. F. Yu, „Generating pure circular TEmn modes using Y-type power dividers", IEEE. Trans. on Microw. Theory and Tech., vol. 58, no. 6, pp. 1543-5150, 2010 (DOI: 10.1109/TMTT.2010.2048252).
  • [20] C. Moeller „Mode converters used in the doublet III ECH microwave system", Int. J. of Electron., vol. 53, no. 6, pp. 587-593, 1982 (DOI: 10.1080/00207218208901552).
  • [21] D. Wagner, M. Blank, T. S. Chu, C. Dubrule, K. Felch, and W. Kasparek, „Design and test od mode generators for high order rotating gyrotron modes", in Proc. Int. Vacuum Electron. Conf., Monterey, CA, USA, 2000 (DOI: 10.1109/OVE:EC.2000.847561).
  • [22] A. Sawant, M. S. Choe, M. Thumm, and E. Choi, „Orbital angular momentum (OAM) of rotating modes driven by electrons In electron cyclotron masers", Scient. Rep., vol. 7, no. 1, 2017 (DOI: 10.1038/s41598-017-03533-y).
  • [23] D. Ghosh, N. Medicherla, and R. Seshadri, „Design of TE62 mode generator for W-Band gyrotron", Asian J. of Converg. in Technol., vol. V, no. I, 2019 [Online]. Available: http://www.asianssr.org/index.php/ajct/article/view/719/570
  • [24] T. H. Chang, T. Idehara, I. Ogawa, L. Agusu, and S. Kobayashi, „Frequency tunable gyrotron using backward-wave components", J. of Appl. Phys., vol. 105, 2009 (DOI: 10.1063/1.3097334).
  • [25] J. Ala-Laurinaho, „ELEC-E4760 THz techniques", Aalto University Department of Electronics and Nanoengineering, May 15, 2018 [Online]. Available: https://mycourses.aalto.fi/course/info.php?id=24692&lang=en
  • [26] A. Arinold, O. Braz, O. Schindel, H. R. Kunkel, and M. Thumm, „A mm-wave D-band vector network analyzer of high dynamics", in Proc. 29th Eur. Microwave Conf., Munich, Germany, 1999 (DOI: 10.1109/EUMA.1999.338516).
  • [27] M. Blank, „High eficiency quasi-optical mode converters for overmoded gyrotrons", Ph.D. thesis, Massachusetts Institute of Technology, 1994 [Online]. Available: https://dspace.mit.edu/handle/1721.1/34089
  • [28] M. Blank, K. Kreischer, and R. J. Temkin, „Theoretical and experimental investigation of a quasi-optical mode converter for a 110-GHz gyrotron", IEEE Trans. on Plasma Sci., vol. 24, no. 3, pp. 1058-1066, 1996 (DOI: 10.1109/27.533113).
  • [29] C. A. Balanis, Modern Antenna Handbook. Wiley, 2008 (ISBN: 9780470036341).
  • [30] M. Losert, J. Jin, and T. Rzesnicki, „RF beam parameter measurements of quasi-optical mode converters in the mW range", IEEE Trans. on Plasma Sci., vol. 41, no. 3, pp. 628-632, 2013 (DOI: 10.1109/TPS.2012.2232942).
  • [31] J. A. Gordon et al., „Millimeter-wave near-field measurements Rusing coordinated robotics", IEEE Trans. on Ant. Propag., vol. 63, no. 12, pp. 5351-5362, 2015 (DOI: 10.1109/TAP.2015.2496110).
  • [32] R. M. Lebrón et al., „A novel near-field robotic scanner for surface, RF and thermal characterization of millimeter-wave active phased array antenna", in Proc. IEEE Int. Symp. on Phased Array Syst. and Technol. PAST 2016, Waltham, MA, USA, 2016 (DOI: 10.1109/ARRAY.2016.7832657).
  • [33] F. Ferrara, C. Gennarelli, and R. Guerriero, „Near-field antenna measurement techniques", in Handbook of Antenna Technologies, Z. N. Chen, D. Liu, H. Nakano, X. Qing, and Th. Zwick, Eds. Springer, 2016, pp. 2107-2163 (DOI: 10.1007/978-981-4560-44-3 117).
  • [34] R. Yaccarino, L. Williams, and Y. Rahmat-Samii, „Linear spiral sampling for the bipolar planar near-field antenna measurement technique", IEEE Trans. on Ant. Propag., vol. 44, no. 7, pp. 1049-1051, 1996 (DOI: 10.1109/8.504314).
  • [35] O. Bucci, C. Gennerelli, and C. Savarese, „Nonredundant NF-FF transformation with helicoidal scanning", J. Electromagn. Waves Appl., vol. 15, no. 11, pp. 1507-1519, 2001 (DOI: 10.1163/156939301X00076).
  • [36] O. Bucci, F. D'Agostino, C. Gennarelli, G. Riccio, and C. Savarese, „Probe compensated far-field reconstruction by near-field plan ar spiral scanning", IEE - Proc. Microw., Antennas Propag., vol. 149, no. 2, pp. 119-123, 2002 (DOI: 10.1049/ip-map:20020265).
  • [37] F. D'Agostino et al., „An effective near-field - far-field transformation technique for elongated antennas using a fast helicoidal scan [measurements corner]", IEEE Ant. and Propag. Mag., vol. 51, no. 4, pp. 134-141, 2009 (DOI: 10.1109/MAP.2009.5338700).
  • [38] R. Cicchetti et al., „Near-field to far-field transformation techniques with spiral scannings: a comprehensive review", Int. J. of Ant. Propag., vol. 2014, ID 143084, 2014 (DOI: 10.1155/2014/143084).
  • [39] S. Costanzo and G. Di Massa, „Near-field to far-field transformation with planar spiral scanning", J. of Electromag. Waves and Appl., vol. 73, 49-59, 2007 (DOI: 10.2528/PIER07031903).
  • [40] F. D'Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, M. Migliozzi, and G. Riccio, „A nonredundant near-field to far-field transformation with spherical spiral scanning for nonspherical antennas", The Open Elec. & Electron. Engin. J., vol. 3, no. 1, pp. 1-8, 2009 (DOI: 10.2174/1874129000903010001).
  • [41] F. D'Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, „An effective NF-FF transformation technique with planar spiral scanning tailored for quasi-planar antennas", IEEE Trans. on Ant. Propag., vol. 56, no. 9, pp. 2981-2987, 2008 (DOI: 10.1109/TAP.2008.928786).
  • [42] S. L. Smith et al., „A millimeter-wave antenna amplitude and phase measurement system", IEEE Trans. on Ant. Propag., vol. 60, no. 4, 1744-1757, 2012 (DOI: 10.1109/TAP.2012.2186218).
  • [43] P. Fuerholz and A. Murk, „Phase-corrected near-field measurements of the TELIS telescope at 637 GHz", IEEE Trans. on Ant. Propag., vol. 57, no. 9, pp. 2518-2525, 2009 (DOI: 10.1109/TAP.2009.2024486).
  • [44] D. J. van Rensburg and G. Hindman, „Sub-millimeter wave plan ar near-field antenna testing", in Proc. 3rd Eur. Conf. on Anten. and Propag. EuCAP 2009, Berlin, Germany, 2009, pp. 1988-1992, 2009 [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5068007
  • [45] A. Raisanen, A. Lehto, and J. Tuovinen, „Phase pattern and chase center measurements of antennas at 105-190 GHz with a novel differential phase method", in Proc. 20th Eur. Microw. Conf., Budapest, Hungary, 1990, pp. 347-352 (DOI: 10.1109/EUMA.1990.336067).
  • [46] J. Tuovinen, A. Lehto, and A. Raisanen, „Phase measurements of millimeter wave antennas at 105-190 GHz with a novel differentia phase method", IEE Proc. H, Microw., Ant. and Propag., vol. 138, no. 2, pp.114-120, 1991 (10.1049/ip-h-2.1991.0020).
  • [47] A. Lehto, J. Tuovinen, O. Boric, and A. Raisanen, „Accurate millimeter wave antenna phase pattern measurements using differentia phase method with three power dividers", IEEE Trans. on Ant. And Propag., vol. 40, no. 7, pp. 851-853, 1992 (DOI: 10.1109/8.155754).
  • [48] T. Isernia, G. Leone, and R. Pierri, „Radiation pattern evaluation from near-field intensities on planes," IEEE Trans. on Ant. And Propag., vol. 44, no. 5, pp. 701-710, 1996 (DOI: 10.1109/8.496257).
  • [49] A. Capozzoli, C. Curcio, G. D'Elia, and A. Liseno, „Millimeterwave phaseless antenna characterization", IEEE Trans. on Ant. And Propag., vol. 57, no. 7, pp. 1330-1337, 2008 (DOI: 10.1109/TIM.2008.917186).
  • [50] S. Liao and R. J. Vernon, „A new fast algorithm for calculating near-field propagation between arbitrary smooth surfaces", In Proc. Joint 30th Int. Conf. on Infrared and Millim. Waves and 13th Int. Conf. on Terahertz Electron., Williamsburg, VA, USA, 2005, vol. 2, pp. 606-607 (DOI: 10.1109/ICIMW.2005.1572687).
  • [51] A. Yaghjian, „An overview of near-field antenna measurements", IEEE Trans. on Ant. and Propag., vol. 34, no. 1, 30-45, 1986 (DOI: 10.1109/TAP.1986.1143727).
  • [52] R. Cao and R. J. Vernon, „Improved performance of three-mirror beam-shaping systems and application to step-tunable converters", in Proc. Joint 30th Int. Conf. on Infrared and Millim. Waves and 13th Int. Conf. on Terahertz Electron., Williamsburg, VA, USA, 2005, vol. 2, pp. 616-617 (DOI: 10.1109/ICIMW.2005.1572692).
  • [53] D. R. Denison, T. S. Chu, M. A. Shapiro, and R. J. Temkin, „Gyrotron internal mode converter reector shaping from measured field intensity", IEEE Trans. on Plasma Sci., 27, no. 2, 512-519, 1999 (DOI: 10.1109/27.772280).
  • [54] M. S. Choe and E. M. Choi, „Experimental study of TE01-TE02 mode converter on 28 GHz", in Proceedings of the Korean Physical Society (Plasma 2013), poster P2-H006.
  • [55] I. Lee, A. Sawant, M. S. Choe, D. J. Lee, and E. Choi, „Accurate identification of whispering gallery mode patterns of gyrotron with stabilized electro-optic imaging system", Physics of Plasmas, vol. 25, no. 1, ID 013116, 2018 (DOI: 10.1063/1.5017558).
  • [56] M. K. Hornstein, „A continuous-wave second harmonic gyrotron oscillator at 460 GHz", Ph.D. thesis, Massachusetts Institute of Technology, 2005 [Online]. Available: https://dspace.mit.edu/bitstream/handle/1721.1/33939/67551196-MIT.pdf
  • [57] I. Russo and W. Menzel, „4-8 GHz near-field probe for Canning of apertures and multimode waveguides", IEEE Microw. and Wirel. Compon. Lett., vol. 21, no. 12, pp. 688-690, 2011 (DOI: 10.1109/LMWC.2011.2173324).
  • [58] K. Yang, L. P. B. Katehi, and J. F. Whitaker, „Electric field map ping system using an optical-fiber-based electrooptic probe", IEEE Microw. and Wirel. Compon. Lett., vol. 11, no. 4, pp. 164-166, 2001 (DOI: 10.1109/7260.916331).
  • [59] W. M. Leach and D. Paris, „Probe compensated near-field measurements on a cylinder", IEEE Trans. on Ant. and Propag., vol. 21, no. 4, pp. 435-445, 1973 (DOI: 10.1109/TAP.1973.1140520).
  • [60] M. Blank, J. A. Casey, K. E. Kreischer, R. J. Temkin, and T. Price, „Experimental study of a high efficiency quasi-optical mode converter for whispering gallery mode gyrotrons", Int. J. of Electron., vol. 72, no. 5-6, pp. 1093-1102, 1992 (DOI: 10.1080/00207219208925635).
  • [61] A. W. Mobius, J. A. Casey, K. E. Kreischer, A. Li, and R. J. Temkin, „An improved design for quasi-optical mode conversion of whispering gallery mode gyrotron radiation", Int. J. of Infrared Milim. Waves, vol. 13, no. 8, pp. 1033-1063, 1992 (DOI: 10.1007/BF01009050).
  • [62] B. G. Ruth, K. R. Dahlstrom, D. C. Schlesinger, and F. L. Libelo, „Design and low-power testing of a microwave Vlasov mode converter", in Proc. IEEE MTT-S Int. Microw. Symp. Digest, Long Beach, CA, USA, 1989, pp. 1277-1280 (DOI: 10.1109/MWSYM.1989.38960).
  • [63] P. F. Wacker, „Non-planar near-field measurements: Spherical scanning", Final Report, Oct. 1973-Jul. 1974, National Bureau of Standards, Boulder, CO. Electromagnetics Div., 1975 (DOI: 10.6028/nbs.ir.75-809).
  • [64] Chevallier, D. Baudry, and A. Louis, „Improvement of electric al near-field measurements with an electro-optic test bench", Progr. in Electromag. Res., vol. 40, pp. 381-398, 2012 (DOI: 10.2528/PIERB12020107).
  • [65] D. Baudry, A. Louis, and B. Mazari, „Characterization of the openended coaxial probe used for near-eld measurements in EMC applications", Progr. in Electromag. Res., vol. 60, pp. 311-333, 2006 (DOI: 10.2528/PIER05112501).
  • [66] R. Borisov, K. Zlatkov, and P. Dankov, „Near-field measurements using low cost equipment for RF device characterization", Electrotech. & Electron. (E+E), vol. 49, no. 3-4, pp. 7-12, 2014 [Online]. Available: https://epluse.tceptt.com/wp-content/uploads/2018/10/20140304-02.pdf
  • [67] L. Bouchelouk, Z. Riah, D. Baudry, M. Kadi, A. Louis, and B. Mazari, „Characterization of electromagnetic fields close to microwave devices using electric dipole probes", Int. J. of RF and Microw. Comp.-aided Engin., vol. 18, no. 2, pp. 146-156, 2008 (DOI: 10.1002/mmce.20274).
  • [68] Y. T. Manjombe, Y. Azzouz, D. Baudry, B. Ravelo, and M. E. H. Benbouzid, „Experimental investigation on the Power electronic transistor parameters inuence to the near-field radiation for the EMC applications", Progr. in Electromag. Res., vol. 21, pp. 189-209, 2011 (DOI: 10.2528/PIERM11092302).
  • [69] D. Baudry et al., „Near-eld probes characterization and interlaboratory comparisons of measurements", in Proc. 7th Int. Worksh. on Electromag. Compatib. of Integr. Circ. EMC Compo 2009, Toulouse, France, 2008.
  • [70] Y. P. Hong, D. J. Lee, N. W. Kang, and H. Koo, „Phase-stabilized W-band planar imaging system for near-to-far-field projection based on photonic sensors", IEEE Anten. and Wirel. Propag. Lett., vol. 17, no. 2, pp. 315-318, 2018 (DOI: 10.1109/LAWP.2017.2788401).
  • [71] Z. R. Wang, B. Yu, and W. Z. Chen, „Design and application of an integrated electro-optic sensor for intensive electric field measurement", IEEE Trans. on Dielec. and Elec. Insul., vol. 18, no. 1, pp. 312-319, 2011 (DOI: 10.1109/TDEI.2011.5704523).
  • [72] Q. Yang, S. Sun, R. Han, W. Sima, and T. Liu, „Intense transie nt electric field sensor based on the electro-optic effect of LiNbO3", AIP Adv., vol. 5, no. 10, 2015 (DOI: 10.1063/1.4934720).
  • [73] C. Han, S. Dong, H. Son, and H. Ding, „A novel all-fiber electric field sensor based on tapered fiber-slab waveguide coupler", Instrum. Sci. & Technol., vol. 42, no. 3, pp. 278-289, 2014 (DOI: 10739149.2013.865215).
  • [74] N. Stan et al., „Optical sensing of electric fields in harsh environments", J. of Lightw. Technol., vol. 35, no. 4, pp. 669-676, 2017 (DOI: 10.1109/JLT.2016.2631149).
  • [75] H. Togo, N. Kukutsu, N. Shimizu, and T. Nagatsuma, „Sensitivitystabilized fiber-mounted electrooptic probe for electric field mapping", J. of Lightw. Technol., vol. 26, no. 15, pp. 2700-2705, 2008 (DOI: 10.1109/JLT.2008.927612).
  • [76] Y. Gaeremynck, G. Gaborit, L. Duvillaret, M. Ruaro, and F. Lecoche, „Two electric-field components measurement Rusing a 2-port pigtailed electro-optic sensor", Appl. Phys. Lett., vol. 99, 2011 (DOI: 10.1063/1.3646103).
  • [77] S. Mathews, G. Farrell, and Y. Semenova, „All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers", Sens. and Actuat. A. Phys., vol. 167, no. 1, pp. 54-59, 2011 (DOI: 10.1016/j.sna.2011.01.008).
  • [78] Y. Zhao, Y. N. Zhang, Q. R. Lv, and J. Li, „Electric field sensor based on photonic crystal cavity with liquid crystal infiltration", J. of Lightw. Technol., vol. 35, no. 16, pp. 3440-3446, 2017 (DOI: 10.1109/JLT.2016.2576500).
  • [79] T. Zhu, Z. Ou, M. Han, M. Deng, and K. S. Chiang, „Propylene carbonate based compact fiber Mach-Zehnder interferometric electric field sensor", J. of Lightwave Technol., vol. 31, pp. 1566-1572, 2013 (DOI: 10.1109/JLT.2013.2254466).
  • [80] C. Han, F. Lv, C. Sun, and H. Ding, „Silica microwire-based interferometric electric field sensor", Opt. Lett., vol. 40, pp. 3683-3686, 2015 (10.1364/OL.40.003683).
  • [81] H. J. Lee, S. J. Kim, M. O. Ko, J. H. Kim, and M. Y. Jeon, „Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor", Opt. Commun., vol. 410, pp. 637-642, 2018 (DOI: 10.1016/j.optcom.2017.11.029).
  • [82] X. Chen et al., „Liquid crystal-embedded tilted fiber grating electric field intensity sensor", J. of Lightwave Technol., no. 16, vol. 35, pp. 3347-3353, 2017 (DOI: 10.1109/JLT.2016.2643163).
  • [83] J. Zhao, H. Y. Zhang, Y. S. Wang, and H. W. Liu, „Fiber-optic electric field sensor based on electrostriction effect", Appl. Mechan. Mater., vol. 187, pp. 235-240, 2012 (DOI: 10.4028/www.scientific.net/AMM.187.235).
  • [84] H. Anirudh, M. V. Reddy, R. L. N. S. Prasad, and B. Sobha, „DC electric field measurement using FBG sensor", in Proc. Of the Worksh. on Recent Adv. in Photon. WRAP 2015, Bangalore, India, 2015, pp. 1-5, 2015 (DOI: 10.1109/WRAP.2015.7805952).
  • [85] Q. Liu, Z. Zhang, X. Fan, J. Du, L. Ma, and Z. He, „A novel optical fiber electric field sensor", in Proc. of the Asia Commun. and Photon. Conf., Shanghai, China, 2015 (DOI: 10.1364/ACPC.2014.ATh3A.193).
  • [86] Y. Yao, B. Yi, J. Xiao, and Z. Li, „FBG based intelligent sensors and structure for electrical power system", in Proc. of the Int. Conf. on Smart Mater. and Nanotechnol. in Engin., Harbin, China, 2007, vol. 6423 (DOI: 10.1117/12.779626).
  • [87] K. Zhang, H. Zhao, Y. Yang, and W. Zhang, „High voltage electrostatic sensor based on Fabry-Perot interferometer", Acta Opt. Sinica, vol. 34, no. 11, 2014 (DOI: 10.3788/AOS201434.1106002).
  • [88] A. Javernik and D. Donlagic, „Miniature, micro-machined, fiberoptic Fabry-Perot voltage sensor", Opt. Express, vol. 27, no. 9, pp. 13280-13291, 2019 (DOI: 10.1364/OE.27.013280).
  • [89] A. Roncin, C. Shafai, and D. Swatek, „Electric field sensor Rusing electrostatic force deection of a micro-spring supported membrane", Sens. and Actuat. A Phys., vol. 123-124, pp. 179-184, 2005 (DOI: 10.1016/j.sna.2005.02.018).
  • [90] A. Kainz et al., „Distortion-free measurement of electric field strength with a MEMS sensor", Nature Electron., vol. 1, pp. 68-73, 2018 (DOI: 10.1038/s41928-017-0009-5).
  • [91] L. Sun, S. Jiang, and J. R. Marciante, „All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber", Opt. Express, vol. 18, no. 6, pp. 5407-5412, 2010 (DOI: 10.1364/OE.18.005407).
  • [92] L. Cheng, J. Han, L. Jin, Z. Guo, and B. O. Guan, „Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence", Opt. Express, vol. 21, no. 25, pp. 30156-30162, 2013 (DOI: 10.1364/OE.21.030156).
  • [93] D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, „Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials", Sens. and Actuat. A: Phys., vol. 147, no. 1, pp. 127-136, 2008 (DOI: 10.1016/j.sna.2008.04.012).
  • [94] I. M. Nascimento, J. Baptista, P. Jorge, J. Cruz, and M. Andres, „Passive interferometric interrogation of a magnetic field sensor Rusing an erbium doped fiber optic laser with magnetostrictive transducer", Sens. and Actuat. A: Phys., vol. 235, pp. 227-233, 2015 (DOI: 10.1016/j.sna.2015.10.021).
  • [95] Z. Shao, X. Qiao, Q. Rong, and A. Sun, „Fiber-optic magnetic field sensor using a phase-shifted fiber Bragg grating assisted by a TbDyFe bar", Sens. and Actuat. A: Phys., vol. 261, pp. 49-55, 2017 (DOI: 10.1016/j.sna.2017.05.001).
  • [96] M. L. Filograno et al., „Triaxial fiber optic magnetic field sensor for magnetic resonance imaging", J. of Lightwave Technol., vol. 35, no. 18, pp. 3924-3933, 2017 (DOI: 10.1109/JLT.2017.2722545).
  • [97] H. Liu, S. W. Or, H. Y. Tam, and D. S. W. Or, „Magnetostrictive composite-fiber Bragg grating (MC-FBG) magnetic field sensor", Sens. and Actuat. A: Phys., vol. 173, no. 1, pp. 122-126, 2012 (DOI: 10.1016/j.sna.2011.11.005).
  • [98] S. M. M. Quintero, A. M. B. Braga, H. I. Weber, A. C. Bruno, and J. F. D. F. Araujo, „A magnetostrictive composite-fiber Bragg grating sensor", Sensors, vol. 10, no. 9, pp. 8119-8128, 2010 (DOI: 10.3390/s100908119).
  • [99] S. M. M. Quintero, C. Martelli, A. M. B. Braga, L. C. G. Valente, and C. C. Kato, „Magnetic field measurements based on terfenol coated photonic crystal fibers", Sensors, vol. 11, no. 12, pp. 11103-11111, 2011 (DOI: 10.3390/s111211103).
  • [100] W. He, L. Cheng, Q. Yuan, Y. Liang, L. Jin, and B. O. Guan, „Magnetostrictive composite material-based polarimetric heterodyning fiber-grating laser miniature magnetic field sensor", Chinese Opt. Lett., vol. 13, no. 5, pp. 50602-50605, 2015 (DOI: 10.3788/COL201513.050602).
  • [101] M. Yang, J. Dai, C. Zhou, and D. Jiang, „Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials", Opt. Express, vol. 17, no. 23, pp. 20777-20782, 2009 (DOI: 10.1364/OE.17.020777).
  • [102] Q. Li and H. Chen, „Design of fiber magnetic field sensor based on fiber Bragg grating Fabry-Perot cavity ring-down spectroscopy", Photon. Sens., vol. 5, no. 2, pp. 189-192, 2015 (DOI: 10.1007/s13320-015-0231-6).
  • [103] R. M. Silva et al., „Magnetic field sensor with Terfenol-D thin-film coated FBG", in Proc. of the 22nd Int. Conf. on Opt. Fiber Sensors OFS-22, Beijing, China, 2012, vol. 8421 (DOI: 10.1117/12.975169).
  • [104] G. N. Smith et al., „Femtosecond laser inscribed Bragg sensor in Terfenol-D coated optical fibre with ablated microslot for the detection of static magnetic fields", in Proc. of the 21st Int. Conf. on Opt. Fiber Sensors OFS-21, Ottawa, Canada, 2011, vol. 7753 (DOI: 10.1117/12.885122).
  • [105] J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, „Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating", Opt. Fiber Technol., vol. 17, no. 3, pp. 210-213, 2011 (DOI: 10.1016/j.yofte.2011.02.004).
  • [106] N. M. Y. Zhang et al., „Magnetic field sensor based on magnetic-fluid-coated long-period fiber grating", J. of Optics, vol. 17, no. 6, 2015 (DOI: 10.1088/2040-8978/17/6/065402).
  • [107] M. Deng, D. Liu, and D. Li, „Magnetic field sensor based on asymmetric optical fiber taper and magnetic uid", Sens. and Actuat. A: Phys., vol. 211, pp. 55-59, 2014 (DOI: 10.1016/j.sna.2014.02.014).
  • [108] L. Luo, M. Lahoubi, S. Pu, J. Tang, and X. Zeng, „Reective all-fiber magnetic field sensor based on microfiber and magnetic uid", Opt. Express, vol. 23, no. 14, pp. 18133-18142, 2015 (DOI: 10.1364/OE.23.018133).
  • [109] S. Pu and S. Dong, „Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints", IEEE Photon. J., vol. 6, no. 4, pp. 1-6, 2014 (DOI: 10.1109/JPHOT.2014.2332476).
  • [110] J. Rao, S. Pu, T. Yao, and D. Su, „Ultrasensitive magnetic field sensing based on refractive-index-matched coupling", Sensors, vol. 17, no. 7, 2017 (DOI: 10.3390/s17071590).
  • [111] S. Pu, L. Mao, T. Yao, J. Gu, M. Lahoubi, and X. Zeng, „Microfiber coupling structures for magnetic field sensing with enhanced sensitivity", IEEE Sens. J., vol. 17, no. 18, pp. 5857-5861, 2017 (DOI: 10.1109/JSEN.2017.2734908).
  • [112] J. Xia, F. Wang, H. Luo, Q. Wang, S. Xiong, and V. M. N. Passaro, „A magnetic field sensor based on a magnetic uid-filled FP-FBG structure", Sensors, vol. 16, no. 5, 2016 (DOI: 10.3390/s16050620).
  • [113] H. Ji, S. Pu, X. Wang, G. Yu, N. Wang, and H. Wang, „Magnetic field sensing based on capillary filled with magnetic uids", Appl. Optics, vol. 51, no. 27, pp. 6528-6538, 2012 (DOI: 10.1364/AO.51.006528).
  • [114] H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, „Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic uids as cladding", Opt. Lett., vol. 38, no. 19, pp. 3765-3768, 2013 (DOI: 10.1364/OL.38.003765).
  • [115] A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, „Magnetic-field sensor based on whispering-gallery modes In a photonic crystal fiber infiltrated with magnetic uid", Opt. Lett., vol. 40, no. 21, pp. 4983-4986, 2015 (DOI: 10.1364/OL.40.004983).
  • [116] J. Peng, S. Jia, J. Bian, S. Zhang, J. Liu, and X. Zhou, „Recent progress on electromagnetic field measurement based on optical sensors", Sensors, vol. 19, no. 13, 2019 (DOI: 10.3390/s19132860).
  • [117] D. Saeedkia, „Terahertz photoconductive antennas: Principles and applications", in Proc. of the 5th Eur. Conf. on Anten. and Propag. EUCAP 2011, Rome, Italy, 2011, pp. 3326-3328.
  • [118] E. J. Lerner, „Twenty watts of terahertz", The Industrial Physicist, 2003 [Online]. Available: https://www.jlab.org/news/articles/twenty-watts-terahertz-industrial-physicist
  • [119] V. S. Bajaj et al., „A long-term, stable, CW 250 GHz gyrotron with low second harmonic starting currents", to be submitted, 2005.
  • [120] J. Jelonnek, „Annual Report 2016", Institute for Pulsed Power and Microwave Technology, KIT Scientific Reports, vol. 7745. KIT Scientific Publishing, Karlsruhe 2018 (DOI: 10.5445/KSP/1000078305).
  • [121] Y. Carmel et al., „A technique to identify electromagnetic modes In oversize waveguides", IEEE Trans. on Microw. Theory and Tech., vol. 32, no. 11, pp. 1493-1495, 1984 (DOI: 10.1109/TMTT.1984.1132879).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea63512a-19c2-4536-8f00-a2470879df57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.