PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vulnerability Assessment of Steel Structures with Plan Irregularities Subjected to Fire

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding the performance of steel frames under fire loading is crucial, as numerous recent instances have revealed vulnerability of steel frames to such hazard. The present study is carried out to evaluate the vulnerability of regular and irregular steel structures in plan to fire event. Irregular buildings are encountered in practice due to various reasons. In this regard, three dimensional four storey steel moment resisting frame structures with rectangular, C-shape, H-shape and L-shape are considered for the analysis. All moment resisting frames are subjected to five different fire cases in each floor and the most critical member is identified. The effect on stress resultants of the surrounding structural elements is investigated at critical temperatures applied to the critical member. Linear static analysis is performed and the results in terms of DCR, axial forces, bending moments and shear forces are obtained and variation in internal forces are calculated. Significant variations in the internal forces indicate that the affected column distributes force on the neighbouring members that are greater than the forces initially carried by them, potentially resulting in member failure and gradual collapse. It is observed that irregularity considerably affects the performance of the structure. The critical components of irregular structures fail at a much lower temperature when compared to regular structures. Among the various structures analysed, maximum difference in axial force, bending moment and shear forces before and after fire exposure are observed in H-shape structure.
Twórcy
  • Research Scholar, Department of Civil Engineering, RV College of Engineering, RV Vidyaniketan Post, Mysore Road, Bengaluru, Karnataka, India
  • Department of Civil Engineering, RV College of Engineering, RV Vidyaniketan Post, Mysore Road, Bengaluru, Karnataka, India
Bibliografia
  • 1. U.S. General Service Administration, “Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects”, 2003.
  • 2. Starossek U., P.E., ASCE M., Haberland M. Disproportionate collapse: terminology and procedures. Journal of Performance of Constructed Facilities. 2010; 24(6):519-528. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000138
  • 3. British Steel, “The Behaviour of a Multi-storey Steel Framed Building Subject to Fire Attack”, British Steel plc., Swinden Technology Center, Moorgate, Rotherham, UK,1998.
  • 4. Usmani A.S., Chung Y.C., Torero J.L. How did the WTC towers collapse: a new theory. Fire Safety Journal. 2003; 38(6):501-533. https://doi.org/10.1016/S0379-7112(03)00069-9
  • 5. Flint G., Usmani A., Lamont S., Lane B., Torero J. Structural response of tall buildings to multiple floor fires. Journal of Structural Engineering. 2007; 133(12):1719-1732. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1719)
  • 6. Lange D., Roben C., Usmani A. Tall building collapse mechanisms initiated by fire: mechanisms and design methodology. Engineering Structures. 2012; 36: 90-103. https://doi.org/10.1016/j.eng-struct.2011.10.003
  • 7. Kotsovinos P., Usmani A. The World Trade Center 9/11 Disaster and progressive collapse of tall buildings. Fire Technology. 2013; 49(3): 741-765. DOI: 10.1007/s10694-012-0283-8
  • 8. Jiang J., Guo Qiang Li. Disproportionate collapse of 3D steel-framed structures exposed to various compartment fires. Journal of Constructional Steel Research. 2017; 138: 594 - 607. https://doi.org/10.1016/j.jcsr.2017.08.007
  • 9. Memari M., Mahmoud H. Performance of steel moment resisting frames with RBS connections under fire loading. Engineering Structures. 2014; 75: 126-138. https://doi.org/10.1016/j.eng-struct.2014.05.040
  • 10. Memari M., Mahmoud H. Multi-resolution analysis of the SAC steel frames with RBS connections under fire. Fire Safety Journal. 2018; 98: 90-108. DOI: 10.1016/j.firesaf.2018.04.008
  • 11. Jiang J., Guo-Qiang Li, and Usmani A. Progressive Collapse Mechanisms of Steel FramesExposed to Fire. Advances in Structural Engineering. 2014, 17(3): 381-398 https://doi.org/10.1260/1369-4332.17.3.381
  • 12. Gernay T. & Gamba A. Progressive collapse triggered by fire induced column loss: Detrimental effect of thermal forces. Engineering Structures. 2018; 172: 483-496. DOI: 10.1016/j.engstruct.2018.06.060
  • 13. Heshmati M., Aghakouchak A.A. Collapse analysis of regular and irregular tall steel moment frames under fire loading. The Structural Design of Tall and Special Buildings. 2019, 29(3): 1-19. https://doi.org/10.1002/tal.1696
  • 14. IS 2062: 2011 – “Indian Standard Hot Rolled Medium and High Tensile Structural Steel” — Specification15. SP: 6(1) – 1964 – “Handbook For Structural Engineers: Structural Steel Sections”
  • 16. IS 800:2007- “Indian Standard General Construction in Steel - Code of Practice”
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea58a6b2-e7d7-49f6-98f2-9c1c02096a9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.