PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of EN-AW-6061-O–graphite nanoflake composites for enhanced mechanical properties using multi-pass friction stir processing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, graphite (Gr) nano flakes dispersion with increasing number of passes (1, 2, and 3) inside the resultant aluminium ENAW-6061-O-Gr composites using Friction Stir Processing (FSP) has been accomplished successfully. The objectives were to embed the Gr nanoflakes inside ENAW-6061-O-Gr composites, investigate the effect of number of FSP passes on the mechanical properties of aluminium 6061/graphite composites. The ENAW-6061-O-Gr composite samples were evaluated with tensile tests and elemental analysis through SEM with EDX and mapping. The dispersion and presence of graphite particles is confirmed. Multi-pass FSP improved the tensile strength of the ENAW-6061-O-Gr composites. The UTS of C3-Composite processed with three passes is 153.65 MPa, that is 24% of improvement compared to the unreinforced aluminium ENAW-6061-O base metal alloy.
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Department of Product Design, Dr. D.Y. Patil School of Design, Pune, India
  • College of Engineering & Sciences, The University of Texas Permian Basin, Midland, Texas, USA
  • Department of Product Design, Dr. D.Y. Patil School of Design, Pune, India
  • College of Engineering & Sciences, The University of Texas Permian Basin, Midland, Texas, USA
Bibliografia
  • 1. Satyanarayana, M. V., Adepu, K., & Chauhan, K. (2021). Effect of Overlapping Friction Stir Processing on Microstructure, Mechanical Properties and Corrosion Behavior of AA6061 Alloy. Metals and Materials International, 27, 3563–3573.
  • 2. Ramesh, C. S., Ahmed, R. N., Mujeebu, M. A., & Abdullah, M. Z. (2009). Development and performance analysis of novel cast copper–SiC–Gr hybrid composites. Materials & Design, 30(6), 1957-1965.
  • 3. Ravi, N., Sastikumar, D., Subramanian, N., Nath, A. K., & Masilamani, V. (2000). Microhardness and microstructure studies on laser surface alloyed aluminum alloy with Ni-Cr. Materials and Manufacturing Processes, 15(3), 395-404.
  • 4. Salehi, M., Saadatmand, M., & Mohandesi, J. A. (2012). Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Transactions of Nonferrous Metals Society of China, 22(5), 1055-1063.
  • 5. Asadi, P., Faraji, G., Masoumi, A., & Givi, M. B. (2011). Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes. Metallurgical and Materials Transactions A, 42(9), 2820-2832.
  • 6. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials science and engineering: R: reports, 50(1-2), 1-78.
  • 7.Omrani, E., Moghadam, A. D., Menezes, P. L., & Rohatgi, P. K. (2016). Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency—a review. The International Journal of Advanced Manufacturing Technology, 83, 325–346.
  • 8. Mishra, R. S., Ma, Z. Y., & Charit, I. (2003). Friction stir processing: a novel technique for fabrication of surface composite. Materials Science and Engineering: A, 341(1-2), 307-310.
  • 9. Seeman, M., Ganesan, G., Karthikeyan, R., Velayudham, A. (2010). Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite response surface methodology approach. International Journal of Advanced Manufacturing Technology, 48(5–8), 613–624.
  • 10. Kumar, A. (2020). Optimization of process parameter for AA6061 alloy during friction stir processing. Materials Today: Proceedings, 46(19), 9164-9167.
  • 11. Rajeshkumar, R., Udhayabanu, V., Srinivasan, A., & Ravi, K. R. (2017). Microstructural evolution in ultrafine grained Al-Graphite composite synthesized via combined use of ultrasonic treatment and friction stir processing. Journal of Alloys and Compounds, 726, 358- 366.
  • 12. Sharma, A., Sharma, V. M., Mewar, S., Pal, S. K., & Paul, J. (2018). Friction stir processing of Al6061-SiC-graphite hybrid surface composites. Materials and Manufacturing Processes, 33(7), 795-804.
  • 13. Liu, F. C., & Ma, Z. Y. (2008). Low-temperature superplasticity of friction stir processed Al–Zn–Mg–Cu alloy. Scripta Materialia, 58(8), 667-670.
  • 14. Nakata, K., Kim, Y. G., Fujii, H., Tsumura, T., & Komazaki, T. (2006). Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Materials Science and Engineering: A, 437(2), 274-280.
  • 15. Johannes, L.B., Mishra, R.S. (2007). Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum. Materials Science and Engineering: A, 464, 255–260.
  • 16. Pickens, J.R., (1990). ASM Handbook, High-Strength Aluminum Powder Metallurgy Alloys. Properties and selection: nonferrous alloys and special- purpose materials. 2, 200 – 215. ISBN 978-0-87170-378-1.
  • 17. Milyani, A. H., Mosleh, A. O., & Moustafa, E. B. (2024). Effect of Hybrid Addition of Boron Nitride and Vanadium Carbide on Microstructure, Tribological, and Mechanical Properties of the AA6061 Al-Based Composites Fabricated by FSP. Journal of Composites Science, 8(12), 500. https://doi.org/10.3390/jcs8120500.
  • 18. Molla Ramezani, N., Davoodi, B., (2024). Evaluating the influence of various friction stir processing strategies on surface integrity of hybrid nanocomposite Al6061. Scientific Report ,14, 8056. https://doi.org/10.1038/s41598-024-58714-3.
  • 19. Desai, V., Badheka, V., Zala, A.B., Parekh, T., Jamnapara, N.I., (2024). Fabrication of Al6061/Ti3AlC2 MAX phase surface composite by friction stir processing and investigation of wear properties. Tribology International, 195, 109594. https://doi.org/10.1016/j.triboint.2024.109594.
  • 20. Caizhi, S., Hui, L., Feng, W., Xudong, H., Wei H., Volodymyr, S., (2024). Study on the Microstructure and Mechanical Properties of ZrB2/AA6111 Particle-Reinforced Aluminum Matrix Composites by Friction Stir Processing and Heat Treatment. International Journal of Metalcasting, 18, 457–469. https://doi.org/10.1007/s40962-023-01029-2.
  • 21. Gowda, Y., Haseebuddin, B.N., Bhaskar Pal, M.R., Keshavamurthy, R., (2021). Mechanical and wear behaviour of graphite nano filler reinforced Al 6061 composites. Materials Today: Proceedings, 46(10), 4504-4509. https://doi.org/10.1016/j.matpr.2020.09.690
  • 22. Awate, P.P., Barve, S.B., (2022). Enhanced microstructure and mechanical properties of Al6061 alloy via graphene nanoplates reinforcement fabricated by stir casting. Functional Composites and Structures, 4, 015005. DOI 10.1088/2631-6331/ac586d
  • 23. Gobiraman, A., Nasrudeen, K., Sankaran, P., (2024). Investigation on the Mechanical Property and Wear Characteristics of Aluminium-6061 Hybrid Composite Reinforced with Graphene-Nanoplatelets by Stir Casting. Journal of the Institution of Engineers (India): Series C, 105, 1147–1163. https://doi.org/10.1007/s40032-024-01085-5.
  • 24. Soustani, M. F., Taghiabadi, R., Jafarzadegan, M., & Farahani, M. V. (2019). Effect of multi-pass friction stir processing on microstructure and mechanical properties of cast Al-7Fe- 5Ni alloy. Materials Research Express, 6(10), 106571.
  • 25. Dinaharan, I. (2016). Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing. Journal of Asian Ceramic Societies, 4(2), 209-218.
  • 26. Marini, C. D., Fatchurrohman, N., (2018). Microstructure and hardness performance of AA6061 aluminium composite using friction stir processing. IOP Conference Series Materials Science and Engineering, 342(1), 012077.
  • 27. Patil, N.A., Nasir, M.K.B.S., Pedapati, S.R., Mamat, O.B., (2021). Effect of graphite exfoliation through multipass friction stir processing on microstructure and mechanical properties of aluminium 7075-silicon carbide-graphite composites, Materials Science and Engineering Technology, 52(10), 1080-1089. https://doi.org/10.1002/mawe.202000299.
  • 28. Chen, G., Chang, H., Sun, J., Wang, B., Yang, L., Zhang, J., Tang, W., (2020) Microstructures and Properties of Graphite Nanoflake/6061Al Matrix Composites Fabricated via Spark Plasma Sintering, Journal of Materials Engineering and Performance, 29, 1235–1244. https://doi.org/10.1007/s11665-020-04676-2
  • 29. Rajeshkumar, R., Udhayabanu, V., Srinivasan, A., & Ravi, K. R. (2017). Microstructural evolution in ultrafine grained Al-Graphite composite synthesized via combined use of ultrasonic treatment and friction stir processing. Journal of Alloys and Compounds, 726, 358- 366.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea55e8c5-6b02-4f64-96b4-4244ec2ec770
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.