Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nowadays, aluminum-based composites have been produced by pure alumina (Al2O3) or pure graphene nanoplatelets (GNPs) in aluminum matrix because of the high compressive strength of alumina and the solid lubricant properties of graphene. However, there are no studies on the influence of both alumina and graphene reinforced aluminum composites. In this study, Al-Al2O3 and Al-Al2O3-GNPs composites were reinforced with pure alumina (between 0 and 30 wt.%), pure graphene (0, 0.1, 0.3, 0.5 wt.%), and their hybrid forms (Al2O3-GNPs) by the powder metallurgy method. This method involved ultrasonic dispensing, mixing, filtering, drying, pressing, and sintering processes. From the test results, the micro Vickers hardness of pure aluminum (28.2±1 HV) improved to 51.5±0.8 HV (Al-30Al2O3) and 63.1±1 HV (Al-30Al2O3-0.1GNPs). Similarly, the ultimate compressive strength (UCS) enhanced from 92.4±4 MPa (pure aluminum) to 165±4.5 MPa (Al-30Al2O3) and 188±5 MPa (Al-30Al2O3-0.1GNPs), respectively. In conclusion, the Vickers hardness and ultimate compressive strength of aluminum hybrid composites improved up to 0.1 wt.% graphene content. After 0.1 wt.% graphene content, these mechanical properties decreased because of the clumping of graphene nanoparticles.
Wydawca
Czasopismo
Rocznik
Tom
Strony
97--106
Opis fizyczny
Bibliogr. 42 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
- Ondokuz Mayis University, Mechanical Engineering Department, Samsun, Turkey
autor
- Ondokuz Mayis University, Mechanical Engineering Department, Samsun, Turkey
Bibliografia
- [1] G.S. Hanumanth, G.A. Irons, J. Mater. Sci. 28, 2459-2465 (1993).
- [2] Y. Sahin, S. Murphy, J. Mater. Sci. 34, 5399-5407 (1996).
- [3] M. Kok, J. Mater. Process. Tech. 161, 381-387 (2005).
- [4] J.K. Chen, I.S. Huang, Compos. Part B-Eng. 44 (1), 698-703 (2013).
- [5] S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, Z.M. Lin, Mat. Sci. Eng. A-Struct. 612, 440-444 (2014).
- [6] F.H. Latief, E.S.M. Sherif, J. Ind. Eng. Chem. 18, 2129-2134 (2012).
- [7] J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, S.L. Dai, Mat. Sci. Eng. A-Struct. 626, 400-405 (2015).
- [8] A. Saboori, C. Novara, M. Pavese, C. Padini, F. Giorgis, P. Fino, J. Mater. Eng. Perform. 26 (3), 993-999 (2017).
- [9] G. O’Donnel, L. Looney, Mat. Sci. Eng. A-Struct. 303, 292-301 (2001).
- [10] O.G. Neikow, S.S. Naboychenko, G. Dawson, Handbook of Non-Ferrous Metal Powders-Technologies and Applications, Elsevier, Amsterdam (2009).
- [11] R.S. Rana, R. Purohit, V.K. Soni, S. Das, Mater. Today-Proc. 2(4-5), 1149-1156 (2015).
- [12] M. Zamani, H. Dini, A. Svoboda, L. Lindgren, S. Seifeddine, N. Andersson, A.E.W. Jarfors, Int. J. Mech. Sci. 121, 164-170 (2017).
- [13] N. Srivastava, G.P. Chaudhari, Mat. Sci. Eng. A-Struct. 724, 199-207 (2018).
- [14] J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Scripta Mater. 66 (8), 594-597 (2012).
- [15] A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183-191 (2007).
- [16] E.P. Randviir, D.A.C. Brownson, C.E. Banks, Mater. Today. 17(9), 426-432 (2014).
- [17] N. Savage, Nature, 482, 30-31 (2012).
- [18] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater. Sci. 56 (8), 1178-1271 (2012).
- [19] B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Nat. Nanotechnol. 3 (10), 626-631 (2008).
- [20] C. Balázsi, B. Fényi, N. Hegman, F. Wéber, Z. Vértesy, Z. Kónya, I. Kiricsi, L.P. Biró, P. Arató, Compos. Part B-Eng. 37 (6), 418-424 (2006).
- [21] M.M.H. Bastwros, A.M.K. Esawi, A. Wifi, Wear, 307 (1-2), 164-173 (2013).
- [22] A. Baradeswaran, A.E. Perumal, Compos. Part B-Eng. 56, 472-476 (2014).
- [23] D. Berman, A. Erdemir, A.V. Sumant, Mater. Today, 17 (1), 31-42 (2014).
- [24] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22 (35), 3906-3924 (2010).
- [25] H.R. Ezatpour, M. Torabi Parizi, S.A. Sajjadi, G.R. Ebrahimi, A. Chaichi, Mater. Chem. Phys. 178, 119-127 (2016).
- [26] S.A. Sajjadi, H.R. Ezatpour, H. Beygi, Mat. Sci. Eng. A-Struct. 528, 8765-8771 (2011).
- [27] M. Bastwros, G. Kim, C. Zhu, K. Zhang, S.Wang, X. Tang, X. Wang, Compos. Part B-Eng. 60, 111-118 (2014).
- [28] M. Rashad, F. Pan, A. Tang, M. Asif, Prog. Nat. Sci.-Mater. 24(2), 101-108 (2014).
- [29] G. Li, B. Xiong, J. Alloy Compd. 697, 31-36 (2017).
- [30] M. Gürbüz, M.C. Şenel, E. Koç, J. Compos. Mater. 52 (4), 553-563 (2018).
- [31] S.F. Bartolucci, J. Paras, M.A. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Mat. Sci. Eng. A-Struct. 528 (27), 7933-7937 (2011).
- [32] M.C. Şenel, M. Gürbüz, E. Koç, J. Mater. Sci. Technol. 34 (16), 1980-1989 (2018).
- [33] R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, J. Alloy Compd. 615 (1), 578-582 (2014).
- [34] M.C. Şenel, M. Gürbüz, E. Koç, Compos. Part B-Eng. 154, 1-9 (2018).
- [35] M. Gürbüz, T. Mutuk, J. Compos. Mater. 52 (4), 543-551 (2018).
- [36] G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York (1986).
- [37] Z. Hu, G. Tong, Q. Nian, R. Xu, M. Saei, F. Chen, C. Chen, M. Zhang, H. Guo, J. Xu, Compos. Part B-Eng. 93, 352-359 (2016).
- [38] Z. Cao, X. Wang, J. Li, Y. Wu, H. Zhang, J. Guo, S. Wang, J. Alloy Compd. 696, 498-502 (2017).
- [39] J.M. Torralba, C.E. Costa, F. Velasco, J. Mater. Process. Tech. 133 (1), 203-206 (2003).
- [40] J.W. Kaczmar, K. Pietrzak, W. Wlosinski, J. Mater. Process. Tech. 106, 58-67 (2000)
- [41] C. Chen, Z. Ding, Q. Tan, H. Qi, Y. He, Powder Technol. 257, 83-87 (2014).
- [42] M. Rashad, F. Pan, Z. Yu, M. Asif H. Lin, R. Pan, Prog. Nat. Sci.-Mater. 25, 460-470 (2015)
Uwagi
1. The authors of this study thank Black Sea Advanced Technology Research and Application Center (KITAM) in Ondokuz Mayıs University (OMU) for SEM and XRD analysis.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea523bf4-427e-473f-b031-50c46c3f34d4