Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the effect of using different values of selected parameters on directional deformations of the oxygen free high conductivity copper rectangular shape product. These parameters include cutting velocity, initial sheet temperature, and punch fillet radius. The article introduces a comprehensive study of cutting mold design procedures and analysis in terms of the directional deformation of the product. The deformations have been analyzed numerically to determine the highest and lowest values of the product utilizing Analysis System (ANSYS) software 18.1. The analysis shows the rise in the deformation as the cutting velocity increases from 40 mm/s to 80 mm/s. Deformation is lowest at 0°C and peaks at 80°C. The smallest deformation with a punch fillet radius of 0.1 mm, while a 0.9 mm radius maximizes it. The deformation increases significantly when the velocity increases from 70 mm/s to 80 mm/s and fillet radii rise from 0.7 mm to 0.9 mm. The higher velocities above 60 mm/s and high temperatures over 60°C result in greater product deformation. The significant rise in the deformation value occurs at temperatures above 60°C and fillet radii above 0.7 mm, while the minimal value occurs at temperatures below 40°C and fillet radii below 0.3 mm. Also, it showed that deformation increases by 30-40% at high cutting velocities, initial sheet temperatures, and fillet radii. The cutting mold model is validated by comparing the current numerical results with available published data for copper sheet blanking. The directional deformations of the present numerical modeling and the experimental work of the available literature appeared in a good agreement with an error value not exceeding the range of 1-3%.
Wydawca
Rocznik
Tom
Strony
480--495
Opis fizyczny
Bibliogr. 33 poz., fig., tab.
Twórcy
autor
- Department of Automated Manufacturing Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Al-Jadryah, Baghdad, Iraq
autor
- Department of Automated Manufacturing Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Al-Jadryah, Baghdad, Iraq
autor
- Department of Automated Manufacturing Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Al-Jadryah, Baghdad, Iraq
autor
- AlNaji University, Baghdad, Iraq
autor
- Department of Mechanical Engineering, College of Engineering, University of Baghdad, Al-Jadryah, Baghdad, Iraq
autor
- Department of Energy Engineering, College of Engineering, University of Baghdad, Al-Jadryah, Baghdad, Iraq
- College of Engineering, AlNaji University, Baghdad, Iraq
- Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
Bibliografia
- 1. Kumar K.R., Vettivel S.C., Subramanian R. Mechanical properties and characterization of additively manufactured materials, 1st ed. Florida: CRC Press, 2024. https//doi.org/10.1201/9781003430186.
- 2. Kumar R. Manufacturing process, 1st ed. Kerala: Jyothis Publishers, 2021. Accessed: Sep. 15, 2024. [Online]. Available: https://www.google.iq/books/edition/Manufacturing_Process/NRszEAAAQBAJ?hl=en&gbpv=0&kptab=getbook.
- 3. Katyal K. Essential guide to metals and manufacturing, 1st ed. USA: Xlibris, 2019. Accessed: Sep. 15, 2024. [Online]. Available: https://www.google.iq/books/edition/Essential_Guide_to_Metals_and_Manufactur/ahKWDwAAQBAJ?hl=en&gbpv=0.
- 4. Awari G.K., Kumbhar V.S., Tirpude R.B., Rajurkar S.W. Automotive manufacturing processes: a case study approach, 1st ed. Florida: CRC Press, 2023. https//doi.org/10.1201/9781003367321.
- 5. Selim, Gurgen, Pruncu C.I. Modern manufacturing processes for aircraft materials, First Edition. Elsevier, 2023. Accessed: Jan. 13, 2025. [Online]. Available: https://www.google.iq/books/edition/Modern_Manufacturing_Processes_for_Aircr/FgimEAAAQBAJ?hl=en&gbpv=0.
- 6. Youssef H.A., El-Hofy H., Ahmed M.H. Manufacturing technology: materials, processes, and equipment, Second Edition. CRC Press, 2024. [Online]. Available: https://www.google.iq/books/edition/Manufacturing_Technology/iUECEQAAQBAJ?hl=en&gbpv=0.
- 7. Dhande U. Handbook of mechanical engineering, Oct. 2024. [Online]. Available: https://www.google.iq/books/edition/Handbook_of_Mechanical_Engineering_Conta/aKQrEQAAQBAJ?hl=en&gbpv=0.
- 8. Tambe L.T., Sadattulla M.U. Mathematical model development & clearance optimization in sheet metal blanking process for copper. International Journal of Progressive Research in Engineering Management and Science, May 2023, 3(5), 460–465.
- 9. Gökçe H. Modelling and optimization for thrust force, temperature and burr height in drilling of custom 450, Exp Tech, Aug. 2022, 46(4), 707–721, https//doi.org/10.1007/s40799-021-00510-z.
- 10. Badgujar T. Y. and Wani V. P. Prediction of burr height formation in sheet metal trimming processes using acoustic signals and an artificial neural network, International Journal of Mechatronics and Manufacturing Systems, Jul. 2023, 16(1), 22–36, https//doi.org/10.1504/IJMMS.2023.132024.
- 11. Sahli M. et al. Modelling and numerical simulation of steel sheet fine blanking process, in Procedia Manufacturing, Krakow: Elsevier B.V., Sep. 2020, 395–400. https//doi.org/10.1016/j.promfg.2020.08.072.
- 12. Basak S., Kim C., Jeong W., Jung Y. I., and Lee M. G. Numerical prediction of sheared edge profiles in sheet metal trimming using ductile fracture modeling, Int J Mech Sci, Apr. 2022, 219(125), [Online]. Available: https://doi.org/./j.ijmecsci.
- 13. Adnan A. A. K., Azinee S. N., Norsilawati N., and Izzul K. A.M. Analysis of the influence of the blanking clearance size to the burr development on the sheet of mild steel, brass and aluminium in blanking process, Journal of Achievements in Materials and Manufacturing Engineering, Mar. 2022, 111(1), 26–32, https//doi.org/10.5604/01.3001.0015.9093.
- 14. Uzun H., Meral T., and Günay M. Modelling and optimization of burr height in fiber laser drilling of ferritic stainless steel, Manufacturing Technologies and Applications, 2020, 1(2), 32–39.
- 15. Kolhatkar A. and Pandey A. Experimental and computational investigation of the impact of geometry variation on rollover in sheet metal cutting, in Proceedings of the World Congress on Engineering, London, 2021, 1.
- 16. Ahmadi F., Abdollahi A., and Zamani S. Experimental study of shearing dimensional parameters in the sheet metal blanking process of StW24 steel with a thickness of 12 mm, Journal of Modern Processes in Manufacturing and Production, 2023, 12(2), 5–21.
- 17. Mandra A. M., Jiang J., and Xi F. J. A new burr formation model for drilling with tool wear, International Journal of Advanced Manufacturing Technology, Apr. 2021, 116, 1437–1450, https//doi.org/10.1007/s00170-021-07031-4.
- 18. Engin K. E. Finite element analysis of notch depth and angle in notch shear cutting of stainless-steel sheet, Journal of Mechanical Engineering, 2023, 69(7–8), 326–338.
- 19. Wu F., Liu Z., Guo B., Sun Y., and Chen J. Research on the burr-free interrupted cutting model of metals, J Mater Process Technol, Sep. 2021, 295, 1–8.
- 20. Yousefi M. and Pervaiz S. 3D finite element modeling of wear effects in the punching process,” Simul Model Pract Theory, Jan. 2022, 114, 1–8.
- 21. Shaheen W., Kanapathipillai S., Mathew P., and Prusty G. Optimization of compound die piercing punches and double cutting process parameters using finite element analysis, Journal of Engineering Manufacture, 2020, 234, 1–2, 3–13.
- 22. Takalkar A. S. and Chinnapandi L. B. M. Electro-thermo-mechanical FE simulations of OFHC Cu material for electric contact with DC/AC currents, in 2016 Int. Conf. on Advances in Computing, Communications and Informatics (ICACCI), Jaipur: IEEE, Nov. 2016, 2131–2137. https//doi.org/10.1109/ICACCI.2016.773236.
- 23. Salman M., Guski V., and Schmauder S. Two-scale modeling of nano-clay-filled shape memory polymers, J Micromech Mol Phys, 2022, 7(2), 71–80.
- 24. Amazon, “Copper Ruler,” Amazon Canada. Accessed: Apr. 10, 2024. [Online]. Available: https://www.amazon.ca/Scissors-Thickened-Straight-Accessory-Thickness/dp/B0CCSRMFX8.
- 25. MatWeb, Oxygen-Free High Conductivity Copper, Hard, UNS C10200, MatWeb Company. Accessed: Apr. 15, 2024. [Online]. Available: https://www.matweb.com/search/DataSheet.aspx?MatGUID=0db21ddedce14e16993ee5cbdf97878d&ckck=1.
- 26. Suchy I. Handbook of Die Design, 2nd ed. USA: McGraw-Hill, 2006. https//doi.org/10.1036/0071462716.
- 27. Boljanovic V. Sheet Metal Forming Processes and Die Design, 4th ed. New York: Industrial Press Incorporated, 2021. Accessed: Apr. 20, 2024. [Online]. Available: https://www.google.iq/books/edition/_/1XPl0AEACAAJ?hl=en&sa=X&ved=2ahUKEwjDw9n7npGJAxWjSfEDHQTWO2AQ7_IDegQIExAD.
- 28. Jain K. C. and Chitale A. K. Textbook of Production Engineering, 2nd ed. India: PHI Learning, 2014. Accessed: Apr. 20, 2024. [Online]. Available: https://www.google.iq/books/edition/TEXTBOOK_OF_PRODUCTION_ENGINEERING/NYxeBAAAQBAJ?hl=en.
- 29. Groover M. P. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 7th ed. John Wiley & Sons, 2021. Accessed: Apr. 25, 2024. [Online]. Available: https://www.google.iq/books/edition/Fundamentals_of_Modern_Manufacturing/FuK1EAAAQBAJ?hl=en&gbpv=0.
- 30. Venkataraman K. Design of Jigs, Fixtures and Press Tools, 2nd ed. India: Springer International Publishing, 2022. https//doi.org/10.1007/9783030765330.
- 31. Benck R. F., Franz R. E., and Diberardo D. A. Quasi-Static Stress-Strain Curves, S-7 Tool Steel, Technical Report, Ballistic Research Laboratory, Maryland, 1980. Available: https://apps.dtic.mil/sti/tr/pdf/ADA093773.pdf.
- 32. Govindan K., Kumar H., Yadav S. Advances in Mechanical and Materials Technology. Springer, 2022.
- 33. Satoba V. S. and Vilas S. B. An overview of effect of punch tool wear radius on burr formation in sheet metal blanking, International Journal of Modern Engineering Research, 2016, 6,(1), 6–11, [Online]. Available: www.ijmer.com.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea4b0d96-df11-42c8-987b-81c7188c8bd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.