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Abstract: In this paper the warped S-transform is introduced as a tool for non-uniform
time-frequency representation (TFR) of the brain electrical activity. The brain oscillations
are classified as the five basic rhythms. The center frequencies and frequency ranges of
these rhythms are non-uniformly distributed over frequency scale. Unlike the conventional
S-transform the proposed technique is based on the warped discrete Fourier transform
(WDFT), that allows for frequency scale warping. This can improves a spectral resolution of
the TFR in particular oscillation band. In opposition to the time-domain filtering techniques,
the brain rhythms can be analysed more precisely in the time-frequency plane as a full-band
signal.
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1. Introduction

The use of electro-encephalography (EEG) for registering brain activity has gained
growing interest in recent years. Five simple periodic rhythms recorded in the EEG
are alpha, beta, gamma, delta and theta. Since these rhythms are related to different
brain activities they are usually analysed independently. Most commonly, the sig-
nals within the delta band (<4 Hz) correspond to a deep sleep, theta frequencies
(4-8 Hz) are typical for dreamlike state, alpha band (8-13 Hz) signals correspond
to relaxed state, beta band (13-35 Hz) is related to waking activity and gamma fre-
quencies (> 35 Hz) are characteristics for mental activities [3]. It should be noted that
those are the basic rhythms only and the full classification of the brain waves includes
slow (<1.5 Hz), fast and ultra fast waves (>80 Hz). An important brain wave is also
mu rhythm that is commonly used as a control feature for brain-computer interfaces
(BCIs) [8]. The mu oscillations (7.5–12.5 Hz) occupies the same frequency range as
the alpha rhythm but specifically, they occur in the sensorimotor (SM) cortex.
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Unfortunately, the exact mechanisms of most brain oscillations are not known.
Some oscillations are independently generated, but many of them are active simul-
taneously. Therefore it is usually assumed that the frequency content of the EEG
recordings is non-stationary and multicomponent.

The discrete Fourier transform (DFT) is widely used in spectral analysis. It pro-
vides global information about the amplitude and phase spectra of the signal at each
frequency. However the EEG recordings (due to its non-stationary nature) are better
described by time-frequency representations (TFRs). Short-time Fourier transform
(STFT) was one of the first TFR technique [16]. Its major disadvantage is inability
to obtain a good frequency and time resolution of low and high frequency events at
once. In order to overcome this limitation the S-transform has been proposed [19]. In
opposition to the STFT, it employs a variable window length providing better time-
frequency resolution. The S-transform is similar to a continuous wavelet transform
(CWT) [4] but in opposition to the CWT the amplitude and phase spectra of the S-
transform are directly related to the spectra of the Fourier transform. It has found
applications in many fields including the EEG data analysis [15], [14].

Those methods are powerful tools in uniform spectral analysis. However the
center frequencies and the frequency ranges of the popular oscillation bands are non-
uniformly distributed over linear frequency scale. Some studies [12] indicate that,
they rather form a geometric progression on the linear scale (and a linear progres-
sion on a natural logarithmic scale). Therefore the uniform spectral analysis of the
full-band EEG signal may not be the best choice. Usually, in order to analyse partic-
ular brain wave the EEG signal is filtered using time-domain methods [11]. However
in this case, some important signal features can be lost or not visible enough (in
time domain). On the other hand some studies suggest [8], [10] that amplitude/phase
coupling exists between two or more oscillation bands. Thus, the non-uniform TFR
technique that is able to increase spectral resolution in arbitrarily selected oscillation
band while the preserving the full-band information can be interesting alternative.

A typical example of the non-uniform frequency decomposition tool is warped
discrete Fourier transform (WDFT) [9]. Number of the WDFT applications can be
found in the literature of signal processing, including filter banks [9] and frequency
estimation [5]. The WDFT was also employed in perceptual speech enhancement
[13], [2].

In this article a warped S-transform is introduced as a tool for non-uniform time-
frequency analysis of the brain wave EEG recordings. The proposed technique is
based on the WDFT and allows for an improving frequency resolution in particular
oscillation band at cost of the lower resolution in other bands. We propose to use
second order allpass function to obtain a proper frequency scale warping. In oppo-
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sition to the time-domain filtering methods, the warped S-transform is strictly TFR
technique thus the all bands can be analysed at once on the time-frequency plane.

2. The S-Transform

The continuous S-transform [19] of the function x(t) is defined as follows

S(τ, f ) =
∞∫

−∞

x(t)g(τ− t, f )e−i2π f tdt, (1)

where τ and f denote the time variable and Fourier frequency, respectively and g(t, f )
is a Gaussian window

g(t, f ) =
| f |√
2π

e−(t f )2/2. (2)

The frequency domain definition of the discrete S-transform, for n = 0,1, ...,N − 1
and k = 1,2, ...,N −1 is given by

S
[

n∆,
k

N∆

]
=

N−1

∑
m=0

X
[

k+m
N∆

]
e−2π2m2/k2

ei2πmn/N , (3)

where ∆ denotes sampling interval and X
[ k

N∆
]

is the DFT of the N-point time series
x[m∆] (with m = 0,1, ...,N −1). For k = 0 and any n the S-transform is simply equal
to arithmetic mean of x[m∆], i.e.

S [n∆,0] =
1
N

N−1

∑
m=0

x [m∆] . (4)

The TFR is strictly redundant, the inverse of the S-transform can be computed using
inverse DFT of the time-averaged spectra, i.e.

x [m∆] =
N−1

∑
k=0

1
N

N−1

∑
n=0

S
[

n∆,
k

N∆

]
ei2πkm/N . (5)

There are computational advantages that come from using the frequency domain def-
inition (3). Namely it can be implemented using the fast Fourier transform (FFT)
algorithm.
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3. The WDFT definition

The WDFT is not in itself the TFR technique, it transform the one-dimensional se-
quence of the time domain samples to one-dimensional frequency domain representa-
tion. It can be considered as a special case of non-uniform discrete Fourier transform
[1]. In the case of the WDFT, the frequency samples are allocated non-uniformly but
regularly over the unit circle. For the sequence x[n] of the length N, it is defined by

X̂ [zk] = X [ẑk] =
N−1

∑
n=0

x[n]ẑ−n
k , k = 0,1, ...,N −1, (6)

with ẑk being the images of allpass transformed equidistant points of the unit circle

z−1
k = e−i2πk/N → ẑk = A(z−1

k ), (7)

where A(z) can be an arbitrary, stable allpass function. As a generalization of the
DFT, the WDFT maintains some of its properties related to the linearity, symmetry
and shifting [9], [5]. Unfortunately, certain important properties are lost.

The matrix representation of the WDFT is given by
X̂0
X̂1
...

X̂N−1

=


1 ẑ−1

0 . . . z−N+1
0

1 ẑ−1
1 . . . z−N+1

1
...

...
. . .

...
1 ẑ−1

N−1 . . . z−N+1
N−1


︸ ︷︷ ︸

D


x0
x1
...

xN −1

 , (8)

with X̂k denoting X̂ [zk] and xk denoting x[k]. This representation is also a basis for
computation inverse transform. The matrix D is in fact the Vanermonde matrix and
for distinct points {zk}N−1

k=0 its inverse is guaranteed from the theoretical point of view.
Note that the elements of the WDFT matrix are no longer the roots of unity, thus
the construction of fast computation algorithm like the FFT, seems impossible. The
currently fastest algorithm was proposed in [9]. It exploits the factorization of the
WDFT matrix into the product of the three matrices: real, the DFT (implemented via
the FFT) and complex diagonal one. Its complexity is significantly reduced, but still
of O(n2).

4. Warped discrete S-transform

The TFR-based version of the WDFT can be implemented using a sliding-window
technique in a similar manner as the STFT. However due to fixed window length a
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such technique allows only for a rough time-frequency representation and is rather
dedicated to real-time processing applications. Therefore we propose a novel TFR
technique that is rather based on the S-transform and exploits some WDFT features.

The discrete S-transform can be defined for points on a complex plane {zk}N−1
k=0

as follows

S[n∆,zk] =
N−1

∑
m=0

x[m∆]gk(n∆−m)z−m
k , (9)

where
gk(n∆−m) = g

(
n∆−m,

argzk

2π

)
. (10)

The warped discrete S-transform can be considered as a special case of the non-
uniformly sampled continuous S-transform. Similarly to (6), it can be obtained from
(9) by replacing zk with ẑk, i.e.:

Ŝ[n∆,zk] = S[n∆, ẑk]. (11)

Unfortunately we can not use the frequency domain definition similar to (3) and the
FFT algorithm, thus the computational advantages are lost. Instead we propose to use
a vector/matrix notation which can be more suitable for hardware implementation
on some platforms. Let x = [x[0]x[∆] ...x[(N −1)∆]]T be an input vector and ŝk =
[Ŝ[0,zk] Ŝ[∆,zk] ... Ŝ[(N − 1)∆,zk]]

T be a corresponding S-transformed vector for kth
spectral bin. It can be verified that

ŝT
k =

(
D{k,:}⊗xT )Gk, (12)

where D{k,:} denotes kth row of the WDFT matrix, ⊗ is Kronecker product and

Gk =


gk(0) gk(1) . . . gk(N −1)
gk(1) gk(0) . . . gk(N −2)

...
...

. . .
...

gk(N −1) gk(N −2) . . . gk(0)

, (13)

is a symmetric Toeplitz matrix composed from Gaussian window coefficients. From
(12) we can derive

xT =
(
ŝT

k G−1
k

)
⊗D∗

{k,:}, k > 0, (14)

which can be viewed as the inverse transformation. This expression is rather not sur-
prising since the time-frequency representation is redundant. Also note that for some
k << N −1 the signal is highly averaged, thus the matrix Gk can be ill-conditioned.
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5. Adjusting the allpass function to the brain waves

The allpass function of the warped S-transform is determined by particular applica-
tion. In the case of the brain waves spectral analysis, we propose to increase frequency
resolution within a specific oscillation band. It can be done by appropriate adjustment
of the allpass filter parameters that results in squeezing/compressing the z-transform
points on a particular section of the unit circle. Although there is some control over
the behaviour of the first-order allpass filter [5], more control is afforded using the
second-order allpass filter, whose the transfer function is given by [17]

A(z) =
a2 +a1z−1 + z−2

1+a1z−1 +a2z−2 , (15)

where a1, a2 are real valued parameters. For stability reasons we assume |am|< 1 for
all m. In order to ensure a proper mapping range, for k = 0,1, ...,N/2, we propose to
use a modified allpass function

ẑk = Â(z−1
k ) = A(z−1

k eiϕ)eiθ, (16)

where 0 < θ < π determines the location on unit circle where the frequency samples
are concentrated and ϕ is a phase offset. In our discussion we assumed that N is
even, for simplicity. Thus the z-transform points, for k = N/2+ 1, ...,N − 1, can be
computed according to

ẑk = Â∗(z−1
N−k). (17)

It can be verified that (16) is in itself a complex allpass function

Â(z) =
α∗

2 +α∗
1z−1 +α∗

0z−2

α0 +α1z−1 +α2z−2 , (18)

with
α0 = e−i(θ/2−ϕ),

α1 = a1e−iθ/2,

α2 = a2e−i(θ/2+ϕ).

(19)

Similarly to the first-order allpass function [5], the magnitude of the parameter α2 (i.e.
a2) determines the local resolution and can be viewed as the independent variable. For
example, for a2 = 0, all frequency samples are placed uniformly on the unit circle,
whereas for 0 < a2 < 1 the frequency samples are compressed around the point eiθ.
We found it empirically that the parameter a1 together with ϕ controls phase mapping
range. In order to cover entire Nyquist frequency range (from 0 to π) we assume that{

Â(ei0) = ei0 = 1
Â(eiπ) = eiπ =−1

(20)
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Since the parameters a2 and θ are given, we can solve above equation set for a1 and
ϕ. As a result we obtain

ϕ = argzc, a1 =
a2

2 −1
|zc|

, (21)

with zc = a2e−iθ − eiθ. Thus, the only thing we have to do is to adjust the parameters
a2 and θ, for a particular oscillation band. As mentioned before, the parameter a2
controls the strength of the frequency scale warping, whereas the parameter θ corre-
sponds to the warping location on the unit circle. Therefore we propose to set

θ = 2π fc/ fs, (22)

and

a2 =
1− tan(π fb/ fs)

1+ tan(π fb/ fs)
, (23)

where fs is a sampling rate and fc, fb is respectively the center frequency and band-
width of the selected oscillation band. It can be verified that (23) is inversely propor-
tional to the bandwidth fb, thus for narrower bands we get stronger warping. In fact
the equation (23) is commonly used to adjust 3dB attenuation bandwidth of notch
filters [17].
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Fig. 1. Adjusting the phase responses of the modified allpass filter: (a) illustrates how the frequency
warping location can be adjusted by varying a parameter θ, while (b) illustrates how the warping
strength can be tuned by varying a2.
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Fig. 2. Locations of the allpass-transformed points {ẑk}N−1
k=0 on the unit circle.

In Figure 1 we depicted phase responses of the modified allpass filter (16), for
different values of the parameters θ and a2. Figure 2 presents the locations of the
allpass-transformed points on the unit circle, for θ = π/4, a2 = 0.67 and N = 64.

The proposed TFR technique has also been verified using real EEG data. The
recordings have been selected from PhysioNet database [6], [18]. They contain the
brain activity related to different motor/imagery tasks (opening and closing either
both fists or both feet). The EEG data were recorded at 160 Hz sampling rate from
64 electrodes placed according to the international 10-10 system [7] (excluding elec-
trodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10). For our purposes
we selected the signal from electrode C3 (placed above SM cortex of the left hemi-
sphere). The mu waves are present when SM cortex is in the idle state and they are
suppressed when subject performs or imagines a motor action.

Figure 3a presents the spectrogram obtained using conventional S-transform
with uniform frequency scale. The spectrograms presented in Fig. 3b and Fig. 3c have
increased spectral resolution within the beta and mu band respectively. They have
been both obtained using warped S-transform for parameters fc = 10 Hz, fb = 5 Hz
(mu band) and fc = 24 Hz, fb = 22 Hz (beta band). As can be seen the time-frequency
plane is non-uniformly stretched (warped) along the Y-axis. Note that the strongest
stretch is around the center frequency of a given oscillation band. In other words
the spectral resolution decreases with increasing distance from the center frequency.
Thus we can analyse the selected brain wave in details while preserving some sig-
nal features of the full-band activity. For instance, in Fig. 3c although the warped
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(a)

(b)

(c)

Fig. 3. Spectrograms of the example EEG signal recorded at electrode C3, obtained using: conventional
S-transform (a), warped S-transform adjusted to reveal activity in beta (b) and warped S-transform
tuned to mu band (c).
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S-transform has been tuned to mu band, some activities in beta and lower bands are
still visible.

In the case of relatively large bandwidths the deformation of the frequency scale
is rather small, thus the Fig. 3b does not introduce much information comparing to
Fig. 3a. Otherwise, for relatively narrow oscillation bands (i.e. mu rhythm) the time-
frequency components are visualised in details. It should be noted that the increase
in spectral resolution comes from data interpolation. In fact true frequency resolution
depends only on window size. However by relocating transform points on a unit
circle we can minimize spectral leak in a particular oscillation band and some spectral
components can be more visible.

6. Summary

We have introduced the warped S-transform as non-uniform TFR technique for anal-
ysis of the brain waves. In fact the novel approach can be considered as a special
case of the continuous S-transform with non-uniformly sampled frequency bins. In
order to achieve a proper frequency scale warping we exploited the allpass function
of the second order in a similar manner as in the case of the WDFT-based meth-
ods. The expressions for allpass function parameters have been provided that allows
for adjusting the frequency scale warping to a particular oscillation band. It results
in stretching the time-frequency plane along the Y-axis and around the center fre-
quency of the selected brain wave. In this way, the rhythms can be better visualized
on a time-frequency plane. At the same time by representing the full-band signal, we
retain information about relationships between different bands.
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SPACZONA TRANSFORMATA S DO ANALIZY FAL
MÓZGOWYCH

Streszczenie: W artykule wprowadzamy spaczoną transformatę S, jako narzędzie nierów-
nomiernej reprezentacji czasowo-częstotliwościowej aktywności elektrycznej mózgu. Oscy-
lacje mózgowe klasyfikowane są, jako pięć podstawowych rytmów. Częstotliwości środkowe
oraz zakresy odpowiadające tym rytmom rozmieszczone są nierównomiernie na skali czę-
stotliwości. Proponowana technika, w przeciwieństwie do konwencjonalnej transformaty S,
opiera się na spaczonej dyskretnej transformacie Fouriera, która pozwala na deformowa-
nie skali częstotliwości. Umożliwia to zwiększenie rozdzielczości widmowej reprezentacji
czasowo-częstotliwościowej w określonym paśmie oscylacji. W odróżnieniu od klasycznych
metod filtracji dziedziny czasu, rytmy mózgowe mogą być dokładniej analizowane w płasz-
czyźnie czasowo-częstotliwościowej, jako sygnał pełno-pasmowy.

Słowa kluczowe: WDFT, transformata S, EEG
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