Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the present paper is to examine both the fatigue behaviour and the phase transition mechanisms of an equiatomic pseudo-elastic NiTi Shape Memory Alloy through cyclic tests (up to 100 loading cycles). More precisely, miniaturised dog-bone specimens are tested by using a customised testing machine and the contents of both austenite and martensite phase are experimentally measured by means of X-Ray diffraction (XRD) analyses. On the basis of such experimental results in terms of martensite content, an analytical model is here formulated to correlate the stress-strain relationship to the phase transition mechanisms. Finally, a validation of the present model by means of experimental data pertaining the stress-strain relationship is performed.
Czasopismo
Rocznik
Tom
Strony
105--108
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
- Department of Civil and Mechanical Engineering University of Cassino and Lazio Meridionale, Via G. Di Biasio 43, 03043 Cassino (FR), Italy
autor
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
- Department of Civil and Mechanical Engineering University of Cassino and Lazio Meridionale, Via G. Di Biasio 43, 03043 Cassino (FR), Italy
autor
- Department Chemical Engineering Materials Environment, University of Roma “La Sapienza”, via Eudossiana 18, 00184 Rome, Italy
Bibliografia
- 1. Baxevanis T., Lagoudas D. (2012), A mode I fracture analysis of a center-cracked in niti shape memory alloy panel under plane stress, International Journal of Fracture, 175, 151–166.
- 2. Bujoreanu L.G. (2008), On the influence of austenitization on the morphology of alfa-phase in tempered Cu–Zn–Al shape memory alloys, Materials Science and Engineering A, 481, 395–403.
- 3. Di Cocco V., Iacoviello F., Maletta C., Natali S. (2014a), Cyclic microstructural transitions and fracture micromechanisms in a near equiatomic NiTi alloy, International Journal of Fatigue, 58, 136–143.
- 4. Di Cocco V., Iacoviello F., Natali S., Volpe V. (2014b), Fatigue crack behavior on a Cu-Zn-Al SMA, Frattura ed Integrità Strutturale, 30, 454–461.
- 5. Freed Y., Banks-Sills L. (2001), Crack growth resistance of shape memory alloys by means of a cohesive zone model, Journal of the Mechanics and Physics of Solids, 55, 2157–2180.
- 6. Gall K., Tyber J., Wilkesanders G., Robertson S.W., Ritchie R.O., Maier H.J. (2008), Effect of microstructure on the fatigue of hotrolled and cold-drawn NiTi shape memory alloys, Materials Science and Engineering A, 486, 389–403.
- 7. Kuribayashi K., Tsuchiya K., You Z., Tomus D., Umemoto M., Ito T., Sasaki M. (2006), Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil, Materials Science and Engineering A, 419, 131–137.
- 8. Li Y.F., Mi X.J., Tan J., Gao B.D. (2009), Thermo-mechanical cyclic transformation behavior of Ti–Ni shape memory alloy wire, Materials Science and Engineering A, 509, 8–13.
- 9. Maletta C. (2012), A novel fracture mechanics approach for shape memory alloys with trilinear stress-strain behavior, International Journal of Fracture, 177, 39–51.
- 10. Maletta C., Falvo A., Furgiuele F., Leonardi A. (2009), Stress induced martensitic transformation in the crack tip region of a NiTi alloy, Journal of Materials Engineering and Performance, 18, 679–685.
- 11. Maletta C., Furgiuele F. (2010), Analytical modeling of stress induced martensitic transformation in the crack tip region of nickeltitanium alloys, Acta Materialia, 58, 92–101.
- 12. Maletta C., Furgiuele F., Sgambitterra E. (2013), Crack tip stress distribution and stress intensity factor in shape memory alloys, Fatigue and Fracture of Engineering Materials and Structures, 36, 903–912.
- 13. Otsuka K., Ren X. (2005), Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 50, 511–678.
- 14. Robertson S.W., Mehta A., Pelton A.R., Ritchie R.O. (2007), Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron Xray microdiffraction analysis, Acta Materialia, 55, 6198–6207.
- 15. Shimamoto A., Zhao H.Y., Abe H. (2004), Fatigue crack propagation and local crack-tip strain behavior in TiNi shape memory fiber reinforced composite, International Journal of Fatigue, 26, 533–542.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea4462bd-a29d-471e-a020-c48579ed84ed