PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical behaviour and phase transition mechanisms of a shape memory alloy by means of a novel analytical model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present paper is to examine both the fatigue behaviour and the phase transition mechanisms of an equiatomic pseudo-elastic NiTi Shape Memory Alloy through cyclic tests (up to 100 loading cycles). More precisely, miniaturised dog-bone specimens are tested by using a customised testing machine and the contents of both austenite and martensite phase are experimentally measured by means of X-Ray diffraction (XRD) analyses. On the basis of such experimental results in terms of martensite content, an analytical model is here formulated to correlate the stress-strain relationship to the phase transition mechanisms. Finally, a validation of the present model by means of experimental data pertaining the stress-strain relationship is performed.
Rocznik
Strony
105--108
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
  • Department of Civil and Mechanical Engineering University of Cassino and Lazio Meridionale, Via G. Di Biasio 43, 03043 Cassino (FR), Italy
autor
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
autor
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
  • Department of Civil and Mechanical Engineering University of Cassino and Lazio Meridionale, Via G. Di Biasio 43, 03043 Cassino (FR), Italy
autor
  • Department Chemical Engineering Materials Environment, University of Roma “La Sapienza”, via Eudossiana 18, 00184 Rome, Italy
Bibliografia
  • 1. Baxevanis T., Lagoudas D. (2012), A mode I fracture analysis of a center-cracked in niti shape memory alloy panel under plane stress, International Journal of Fracture, 175, 151–166.
  • 2. Bujoreanu L.G. (2008), On the influence of austenitization on the morphology of alfa-phase in tempered Cu–Zn–Al shape memory alloys, Materials Science and Engineering A, 481, 395–403.
  • 3. Di Cocco V., Iacoviello F., Maletta C., Natali S. (2014a), Cyclic microstructural transitions and fracture micromechanisms in a near equiatomic NiTi alloy, International Journal of Fatigue, 58, 136–143.
  • 4. Di Cocco V., Iacoviello F., Natali S., Volpe V. (2014b), Fatigue crack behavior on a Cu-Zn-Al SMA, Frattura ed Integrità Strutturale, 30, 454–461.
  • 5. Freed Y., Banks-Sills L. (2001), Crack growth resistance of shape memory alloys by means of a cohesive zone model, Journal of the Mechanics and Physics of Solids, 55, 2157–2180.
  • 6. Gall K., Tyber J., Wilkesanders G., Robertson S.W., Ritchie R.O., Maier H.J. (2008), Effect of microstructure on the fatigue of hotrolled and cold-drawn NiTi shape memory alloys, Materials Science and Engineering A, 486, 389–403.
  • 7. Kuribayashi K., Tsuchiya K., You Z., Tomus D., Umemoto M., Ito T., Sasaki M. (2006), Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil, Materials Science and Engineering A, 419, 131–137.
  • 8. Li Y.F., Mi X.J., Tan J., Gao B.D. (2009), Thermo-mechanical cyclic transformation behavior of Ti–Ni shape memory alloy wire, Materials Science and Engineering A, 509, 8–13.
  • 9. Maletta C. (2012), A novel fracture mechanics approach for shape memory alloys with trilinear stress-strain behavior, International Journal of Fracture, 177, 39–51.
  • 10. Maletta C., Falvo A., Furgiuele F., Leonardi A. (2009), Stress induced martensitic transformation in the crack tip region of a NiTi alloy, Journal of Materials Engineering and Performance, 18, 679–685.
  • 11. Maletta C., Furgiuele F. (2010), Analytical modeling of stress induced martensitic transformation in the crack tip region of nickeltitanium alloys, Acta Materialia, 58, 92–101.
  • 12. Maletta C., Furgiuele F., Sgambitterra E. (2013), Crack tip stress distribution and stress intensity factor in shape memory alloys, Fatigue and Fracture of Engineering Materials and Structures, 36, 903–912.
  • 13. Otsuka K., Ren X. (2005), Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 50, 511–678.
  • 14. Robertson S.W., Mehta A., Pelton A.R., Ritchie R.O. (2007), Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron Xray microdiffraction analysis, Acta Materialia, 55, 6198–6207.
  • 15. Shimamoto A., Zhao H.Y., Abe H. (2004), Fatigue crack propagation and local crack-tip strain behavior in TiNi shape memory fiber reinforced composite, International Journal of Fatigue, 26, 533–542.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea4462bd-a29d-471e-a020-c48579ed84ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.