PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boundary behavior of a constrained brownian motion between reflecting-repellent walls

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stochastic variational inequalities provide a unified treatment for stochastic differential equations living in a closed domain with normal reflection and/or singular repellent drift. When the domain is a convex polyhedron, we prove that the reflected-repelled Brownian motion does not hit the non-smooth part of the boundary. A sufficient condition for nonhitting a face of the polyhedron is derived from the one-dimensional situation. A full answer to the question of attainability of the walls of the Weyl chamber may be given for a radial Dunkl process.
Rocznik
Strony
273--287
Opis fizyczny
Bibliogr. 31 poz., tab.
Twórcy
autor
  • Université d’Orléans, MAPMO, CNRS, UMR 6628, Fédération Denis Poisson, FR 2924, B.P. 6759, 45067 ORLEANS Cedex 2
Bibliografia
  • [1] R. F. Bass and E. Pardoux, Uniqueness for diffusions with piecewise constant coefficients, Probab. Theory Related Fields 76 (1987), pp. 557-572.
  • [2] M.-F. Bru, Diffusions of perturbed principal component analysis, J. Multivariate Anal. 29 (1989), pp. 127-136.
  • [3] M.-F. Bru, Wishart processes, J. Theoret. Probability 4 (1991), pp. 725-751.
  • [4] E. Cépa, Equations différentielles stochastiques multivoques, Sém. Probab. XXIX, Lecture Notes in Math. No 1613, Springer 1995, pp. 86-107.
  • [5] E. Cépa, Problème de Skorohod multivoque, Ann. Probab. 26 (1998), pp. 500-532.
  • [6] E. Cépa and D. Lépingle, Diffusing particles with electrostatic repulsion, Probab. Theory Related Fields 107 (1997), pp. 429-449.
  • [7] E. Cépa and D. Lépingle, Brownian particles with electrostatic repulsion on the circle: Dyson’s model for unitary random matrices revisited, ESAIM: Probab. Stat. 5 (2001), pp. 203-224.
  • [8] E. Cépa and Lépingle, No multiple collisions for mutually repelling Brownian particles, Sém. Probab. XL, Lecture Notes in Math. No 1899, Springer 2007, pp. 241-246.
  • [9] O. Chybiryakov, Processus de Dunkl et relation de Lamperti, Ph.D. Thesis, Université de Paris VI (2006).
  • [10] O. Chybiryakov, L. Gallardo and M. Yor, Dunkl processes and their radial parts relative to a root system, Travaux en cours 71, Hermann 2008, pp. 113-197.
  • [11] J. G. Dai and R. J. Williams, Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedra, Theory Probab. Appl. 40 (1996), pp. 1-40.
  • [12] F. Delarue, Hitting time of a corner for a reflected diffusion in the square, Ann. Inst. H. Poincaré Probab. Statist. 44 (2008), pp. 946-961.
  • [13] N. Demni, The Laguerre process and generalized Hartman-Watson law, Bernoulli 13 (2007), pp. 556-580.
  • [14] N. Demni, A guided tour in the world of radial Dunkl processes, Travaux en cours 71, Hermann 2008, pp. 199-226.
  • [15] N. Demni, Radial Dunkl processes: existence, uniqueness and hitting time, C. R. Acad. Sci. Paris, Sér. I 347 (2009), pp. 1125-1128.
  • [16] N. J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys. 3 (1962), pp. 1191-1198.
  • [17] D. J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), pp. 177-204.
  • [18] D. Hobson and W. Werner, Non-colliding Brownian motion on the circle, Bull. London Math. Soc. 28 (1996), pp. 643-650.
  • [19] J. E. Humpreys, Reflection groups and Coxeter groups, Cambridge University Press, 1990.
  • [20] K. Inukai, Collision or non-collision problem for interacting Brownian particles, Proc. Japan Acad. Ser. A 82 (2006), pp. 66-70.
  • [21] W. König and N. O’Connell, Eigenvalues of the Laguerre process as non-colliding squared Bessel processes, Electron. Comm. Probab. 6 (2001), pp. 107-114.
  • [22] D. Lépingle and C. Marois, Equations différentielles stochastiques multivoques unidimensionnelles, Sém. Probab. XXI, Lecture Notes in Math. No 1247, Springer 1987, pp. 520-533.
  • [23] H. P. McKean Stochastic Integrals, Academic Press, New York 1969.
  • [24] J. R. Norris, L. C. G. Rogers and D. Williams, Brownian motions of ellipsoids, Trans. Amer. Math. Soc. 294 (1986), pp. 757-765.
  • [25] N. O’Connell, Random matrices, non-colliding processes and queues, Sém. Probab. XXXVI, Lecture Notes in Math. No 1801, Springer 2003, pp. 165-182.
  • [26] M. Rösler and M. Voit, Markov processes related with Dunkl operators, Adv. in Appl. Math. 21 (1998), pp. 575-643.
  • [27] H. Rost and M. E. Vares, Hydrodynamics of a one-dimensional nearest neighbor model, Contemp. Math. Amer. Math. Soc. 41 (1985), pp. 329-342.
  • [28] B. Schapira, The Heckman-Opdam Markov process, Probab. Theory Related Fields 138 (2007), pp. 495-519.
  • [29] H. Spohn, Dyson’s model of interacting Brownian motions at arbitrary coupling strength, Markov Process. Related Fields 4 (1998), pp. 649-661.
  • [30] S. R. S. Varadhan and R. J. Williams, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 38 (1985), pp. 405-443.
  • [31] R. J. Williams, Reflected Brownian motion with skew symmetric data in a polyhedral domain, Probab. Theory Related Fields 75 (1987), pp. 459-485.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea3a2bd4-6e16-42f2-955d-e646a3e96a5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.