Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The space plasma has relatively low energy but is dense in the low Earth orbit (LEO). In this study, we prepared various samples of anodic alloy surfaces with coating thicknesses of 20, 25, 35, and 45 μm to identify the most suitable characteristics for space applications. Ground-based tests were conducted at the Laboratory of Lean Satellite Enterprises and In-Orbit Experiments at the Kyushu Institute of Technology. A radio frequency (RF) plasma source was used to generate a simulated LEO plasma using argon gas in a vacuum chamber. The plasma properties were measured with a Langmuir probe under different test conditions. A negatively biased voltage of −450 V was applied to the samples to study charging/discharging phenomena. The samples were exposed to Ar-plasma for 1-2 h. The physical properties and structural morphology of various alloy samples were analyzed before and after exposure to plasma. This analysis involved ultraviolet (UV)/visible (Vis)/ NearInfrared (NIR) absorption spectra, Energy Dispersive X-ray (EDX) analysis, and surface roughness testing. The results showed that space plasma notably impacts the physical properties and morphology of the alloys. A coated thickness of around 25 μm is considered more suitable for spacecraft surface structures due to its improved optical stability and resistance to plasma degradation, as indicated by the experimental results.
Rocznik
Tom
Strony
70--90
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- National Research Institute of Astronomy and Geophysics, 11421, Cairo, Egypt
autor
- National Research Institute of Astronomy and Geophysics, 11421, Cairo, Egypt
autor
- National Research Institute of Astronomy and Geophysics, 11421, Cairo, Egypt
autor
- National Research Institute of Astronomy and Geophysics, 11421, Cairo, Egypt
autor
- National Research Institute of Astronomy and Geophysics, 11421, Cairo, Egypt
Bibliografia
- Abd El-Hameed, A. M., Abdel-Aziz, Y. A., & El-Tokhy, F. S. (2017). Anodic coating characteristics of different aluminum alloys for spacecraft materials applications. Materials Sciences and Applications, 8(2), 197-208. https://doi.org/10.4236/msa.2017.82013.
- Abdel-Aziz, Y. A., & Abd El-Hameed, A. M. (2013). Ground-based simulation for the effects of space plasma on spacecraft. Advances in Space Research, 51(1), 133-142. https://doi.org/10.1016/j.asr.2012.07.026.
- Abdel-Aziz, Y. A., Abd El-Hameed, A. M., Ismail, M. I., Ahmed, A., Elifiky, D., & Gregorio, A. (2021). Effects of space plasma on an oxide coating of spacecraft's surface materials. Advances in Space Research, 68(3), 1601-1612. https://doi.org/10.1016/j.asr.2021.04.004.
- ALWITT, R., MCCLUNG, R., & Jacobs, S. (1992, January). Anodized aluminum coatings for thermal control. I-Coating process and stresses. In Materials Specialist Conference-Coating Technology for Aerospace Systems (p. 2158). https://doi.org/10.2514/6.1992-2158.
- Araujo, J. V. D. S., Milagre, M., & Costa, I. (2024). A historical, statistical and electrochemical approach on the effect of micros. http://dx.doi.org/10.1080/10408436.2023.2230250.
- Brace, L. H. (1998). Langmuir probe measurements in the ionosphere. Measurement techniques in space plasmas: Particles, 102, 23-35. https://doi.org/10.1029/gm102p0023.
- Chatar, K., Kitamura, K., & Cho, M. (2024). Onboard data prioritization using multi-class image segmentation for nanosatellites. Remote Sensing, 16(10), 1729. https://doi.org/10.3390/rs16101729.
- Cho, M., Ramasamy, R., Hikita, M., Tanaka, K., & Sasaki, S. (2002). Plasma response to arcing in ionospheric plasma environment: Laboratory experiment. Journal of spacecraft and rockets, 39(3), 392-399. https://doi.org/10.2514/2.3838.
- de Sousa Araujo, J. V., Milagre, M. X., Zhou, X., & Costa, I. (2024). An assessment of pitting corrosion in anodized aluminum alloys: It might not be what it seems. Materials and Corrosion, 75(5), 599-613. https://doi.org/10.1002/maco.202313977.
- Dursun, T., & Soutis, C. (2014). Recent developments in advanced aircraft aluminium alloys. Materials & Design (1980-2015), 56, 862-871. https://doi.org/10.1016/j.matdes.2013.12.002.
- Fukuda, H., Toyoda, K., & Cho, M. (2017). Mission Results Analysis of High-Voltage Technology Demonstration Satellite HORYU-II. IEEE Transactions on Plasma Science, 45(8), 1871-1879. https://doi.org/10.1109/tps.2017.2705726.
- Govindaraju, H. K., Jayaraj, T., Sadanandarao, P. R., & Venkatesha, C. S. (2010). Evaluation of mechanical properties of as-cast Al.-Zn-Ce alloy. Materials & Design, 31, S24-S29. https://doi.org/10.1016/j.matdes.2009.10.015.
- Gupta, S. B., Kalaria, K. R., Vaghela, N. P., Mukherjee, S., Joshi, R. S., Puthanveettil, S. E., ... & Ekkundi, R. S. (2014). An overview of spacecraft charging research in India: Spacecraft plasma interaction experiments-SPIX-II. IEEE Transactions on Plasma Science, 42(4), 1072-1077. https://doi.org/10.1109/tps.2014.2306019.
- Hastings, D., & Garrett, H. (1996). Spacecraft-Environment Interactions. https://doi.org/10.1017/cbo9780511525032.
- He, G., Guo, W., He, D., Zhang, J., Xing, Z., Lv, Z., ... & Huang, Y. (2023). Study of the Mechanical Properties and Thermal Control Performance of Plasma-Sprayed Alumina Coating on Aluminum Alloy Surface. Applied Sciences, 13(2), 956. https://doi.org/10.3390/app13020956.
- Hennessy, J., Balasubramanian, K., Moore, C. S., Jewell, A. D., Nikzad, S., France, K., & Quijada, M. (2016). Performance and prospects of far ultraviolet aluminum mirrors protected by atomic layer deposition. Journal of Astronomical Telescopes, Instruments, and Systems, 2(4), 041206-041206. https://doi.org/10.1117/1.jatis.2.4.041206.
- Hillard, G. B., & Vagner, B. (2000, July). Spacecraft charging effects on anodized aluminum surfaces. In Collection of Technical Papers. 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC)(Cat. No. 00CH37022) (Vol. 1, pp. 63-68). Ieee. https://doi.org/10.1109/iecec.2000.870628.
- Hillard, G., & Ferguson, D. (1995). Measured rate of arcing from an anodized aluminum sample on the SAMPIE flight experiment. In 33rd Aerospace Sciences Meeting and Exhibit (p. 487). https://doi.org/10.2514/6.1995-487.
- Inojosa, R. A., Co, C. B., & Cho, M. (2023, February). Integration of a UHF Fractal Antenna into a 1U CubeSat for Low-Earth Orbit Mission. In International Conference on Advances in Communication Technology and Computer Engineering (pp. 93-104). Cham: Springer Nature Switzerland. http://dx.doi.org/10.1007/978-3-031-37164-6_8.
- Kang, Y. X., Li, Z. L., Yan, S. F., Chen, W. D., & Guo, C. X. (2024). Optimization of anodizing conditions and hole sealing treatments for enhanced anti-corrosion properties of magnesium alloys. Ceramics International. https://doi.org/10.1016/j.ceramint.2024.04.302.
- Karpe, B., Kern, K., Kovač, J., Gunde, M. K., Nagode, A., Bizjak, M., & Zorc, M. (2023). EFFECT OF A SCANDIUM ADDITION ON ANODIZING AlMg ALLOYS. Materials and Technology, 57(2), 155-161. https://doi.org/10.17222/mit.2023.755.
- Keçebaş, M. A., & Şendur, K. (2018). Enhancing the spectral reflectance of refractory metals by multilayer optical thin-film coatings. JOSA B, 35(8), 1845-1853. https://doi.org/10.1364/josab.
- Kern, O., & Bilén, S. (2003). Model of current collection to small breaches in electrodynamic tether insulation. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (p. 4947). https://doi.org/10.2514/6.2003-4947.
- Komarov, F. F., Konstantinov, S. V., Chizhov, I. V., Zaikov, V. A., Zubar, T. I., & Trukhanov, A. V. (2023). Nanostructured TiAlCuN and TiAlCuCN coatings for spacecraft: effects of reactive magnetron deposition regimes and compositions. RSC advances, 13(27), 18898-18907. https://doi.org/10.1039/d3ra02301j.
- Lai, S. T. (2012). Fundamentals of spacecraft charging: spacecraft interactions with space plasmas. Princeton University Press. https://doi.org/10.1515/9781400839094.
- Mora-Sanchez, H., Del Olmo, R., Rams, J., Torres, B., Mohedano, M., Matykina, E., & Arrabal, R. (2021). Hard anodizing and plasma electrolytic oxidation of an additively manufactured AlSi alloy. Surface and Coatings Technology, 420, 127339. https://doi.org/10.1016/j.surfcoat.2021.127339.
- Paz Martínez-Viademonte, M., Abrahami, S. T., Hack, T., Burchardt, M., & Terryn, H. (2020). A review on anodizing of aerospace aluminum alloys for corrosion protection. Coatings, 10(11), 1106. https://doi.org/10.3390/coatings10111106.
- Poznyak, A., Knörnschild, G., Hoha, A., & Pligovka, A. (2024). Porous and Ag-, Cu-, ZnDoped Al2O3 Fabricated via Barrier Anodizing of Pure Al and Alloys. Coatings, 14(5), 576. https://doi.org/10.3390/coatings14050576.
- Prater, W. L. (2008). Pitting corrosion of cast metallurgy aluminum-beryllium alloys in sulfuric acid solutions. Corrosion, 64(6), 517-531. https://doi.org/10.5006/1.3278488.
- Shimizu, Y., & Ueda, K. (2016). Determination of 4f energy levels for trivalent lanthanide ions in YAlO3 by X-ray photoelectron spectroscopy. Thin Solid Films, 614, 69-72. http://dx.doi.org/10.1016/j.tsf.2016.03.020.
- Staley, J. T., & Lege, D. J. (1993). Advances in aluminium alloy products for structural applications in transportation. Le Journal de Physique IV, 3(C7), C7-179. https://doi.org/10.1051/jp4:1993728.
- Tahara, H., & Masuyama, T. (2006). Ground-based experiment of electric breakdown of spacecraft surface insulator in an ambient plasma environment. IEEE transactions on plasma science, 34(5), 1959-1966. https://doi.org/10.1109/tps.2006.875431.
- Tahara, H., Kawabata, T., Zhang, L., Yasui, T., & Yoshikawa, T. (1997). Exposure of spacecraft polymers to energetic ions, electrons and ultraviolet light. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 121(1- 4), 446-449. https://doi.org/10.1016/s0168-583x(96)00600-3.
- Tahara, H., Zhang, L., Hiramatsu, M., Yasui, T., Yoshikawa, T., Setsuhara, Y., & Miyake, S. (1995). Exposure of space material insulators to energetic ions. Journal of applied physics, 78(6), 3719-3723. https://doi.org/10.1063/1.359951.
- Takahashi, A., Muraguchi, R., Iwata, M., & Cho, M. (2014). Charging and arcing test on semiconductive coated solar coupon panel. IEEE Transactions on Plasma Science, 42(2), 384-390. https://doi.org/10.1109/tps.2013.2295627.
- Tribble, A. C., Lukins, R., Watts, E., Borisov, V. A., Demidov, S. A., Denisenko, V. A., ... & Sokolova, S. P. (1996). United States and Russian thermal control coating results in low earth orbit. Journal of spacecraft and rockets, 33(1), 160-166. https://doi.org/10.2514/3.55722.
- Tursunkhanova, R. B., Sergeev, V. P., Kalashnikov, M. P., Sergeev, O. V., & Neufeld, V. V. (2023). The effect of indium–tin oxide coatings on the formation of craters on glass surfaces under the impact of high-velocity microparticles. Acta Astronautica, 204, 863-868. https://doi.org/10.1016/j.actaastro.2022.10.047.
- Withanage, D. C., Teramoto, M., & Cho, M. (2023). On-Orbit Magnetometer Data Calibration Using Genetic Algorithm and Interchangeability of the Calibration Parameters. Applied Sciences, 13(11), 6742. https://doi.org/10.3390/app13116742.
- Yang, X., Sun, G., Guo, G., Zou, F., Li, W., Lian, R., ... & Zhang, G. (2023). Tailoring Organic/Inorganic Interface Trap States of Metal Oxide/Polyimide toward Improved Vacuum Surface Insulation. ACS Applied Materials & Interfaces, 15(34), 40963-40974. https://doi.org/10.1021/acsami.3c07998.
- Zhou, X., Thompson, G. E., Skeldon, P., Wood, G. C., Shimizu, K., & Habazaki, H. (1999). Film formation and detachment during anodizing of Al.-Mg alloys. Corrosion Science, 41(8), 1599-1613. https://doi.org/10.1016/s0010-938x(99)00007-4.
- Zhu, M., Song, Y., Liu, Z., Xu, D., Dong, K., & Han, E. H. (2022). Optimization of thermal control and corrosion resistance of PEO coatings on 7075 aluminum alloy by frequency alteration. Surface and Coatings Technology, 446, 128797. https://doi.org/10.1016/j.surfcoat.2022.128797.
- Zhu, W., Deng, Y., & Guo, X. (2022). Influence of adjusting the anodizing and aging sequences on the microstructure, fatigue property and corrosion resistance of anodized AA6082 alloys. Materials Characterization, 189, 111941 https://doi.org/10.1016/j.matchar.2022.111941.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea38758e-8b25-4f6f-874a-7ebc85745608
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.