PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coordination number for random distribution of parallel fibres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of computer simulations carried out to determine coordination numbers for a system of parallel cylindrical fibres distributed at random in a circular matrix according to twodimensional pattern created by random sequential addition scheme. Two different methods to calculate coordination number were utilized and compared. The first method was based on integration of pair distribution function. The second method was the modified sequential analysis. The calculations following from ensemble average approach revealed that these two methods give very close results for the same neighbourhood area irrespective of the wide range of radii used for calculation.
Rocznik
Strony
3--26
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
Bibliografia
  • [1] Muller P.: Glossary of terms used in physical organic chemistry. Pure Appl. Chem. 66(1994), 5, 1077–1184.
  • [2] Vahvaselka K., Magnus J.M.: X-ray diffraction study of liquid sulfur. Phys. Scripta 38(1988), 5, 737–741.
  • [3] Jouannot-Chesney P., Jernot J. P., Lantuejoul C.: Practical determination of the coordination number in granular media. Image Anal. Stereol. 25(2006), 1, 55–61.
  • [4] Torquato S.: Random Heterogeneous Materials – Microstructure and Macroscopic Proporties. Springer-Verlag, Berlin 2002.
  • [5] Antwerpen W., Rousseau P.: A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nuclear Eng. Design 240(2010), 7, 1803–1818.
  • [6] Furmański P., Seredyński M., Łapka P., Banaszek J.: Micro-macro model for prediction of local temperature distribution in heterogenous and two-phase media. Arch. Thermodyn. 35(2014), 3, 81–103.
  • [7] Nayak A. L., Tien C.: A statistical thermodynamic theory for coordination-number distribution and effective thermal conductivity of random packed beds. Int. J. Heat Mass Trans. 21(1978), 6, 669–676.
  • [8] Largo J., Solana J.: Theory and computer simulation of the coordination number of square-well fluids of variable width. Fluid Phase Equilibr. 193(2002), 1-2, 277–287.
  • [9] Torquato S., Uche O.U., Stillinger F.H.: Random sequential addition of hard spheres in high euclidean dimensions. Phys. Rev. E 74(2006),6, 061308–061308-10.
  • [10] Huerta A., Naumis G.G.: Role of rigidity in the fluid-solid transition. Phys. Rev. Lett. 90(2003), 145701-1–145701-4.
  • [11] Suzuki M., Oshima T.: Estimation of the co-ordination number in a multicomponent mixture of spheres. Powder Technol. 35(1983), 2, 159–166.
  • [12] Tassopoulos M., Rosner D.: Microstructural descriptors characterizing granular deposits. AIChEJ. 38(1992), 1, 15–25.
  • [13] Zarichnyak Y.P.: Generalization of data on the dependence of the coordination number on the porosity in the fillings of sintered or pressed granular materials. Inzhenerno-Fizicheskii Zhurnal 39(1980), 5, 862–865 (in Russian).
  • [14] Guo X., Riebel U.: Theoretical direct correlation function for two-dimensional fluids of monodisperse hard spheres. J. Chem. Phys. 125(2006), 14, 144504.
  • [15] Danwanichakul P., Glandt E.D.: Continutiy between disorder and order in the sequential deposition of particles. Chem. Eng. Commun. 192(2005), 11, 1405–1423.
  • [16] Boublik T.: Structure of two-dimensional hard disk systems. Simple geometric method. Fluid Phase Equilibr. 316(2012), 1–5.
  • [17] Cadilhe A., Araujo N., Privman V.: Random sequential adsorption: From continuum to lattice and pre-patterned substrates. J. Phys. Cond. Mat. 19(2007), 6, 065124.
  • [18] Bochkanov S., Bystritsk V.: ALGLIB User Guide. http://www.alglib.net, 2012.
  • [19] Hopkins A.B., Stillinger F., Torquato S.: Dense sphere packings from optimized correlation functions. Phys. Rev. E 79(2009), 3, 031123-1–031123-10.
  • [20] Furmański P.: Heat Conduction in Composites: Homogenization and Macroscopic Behavior. Appl. Mech. Rev. 50(1997), 6, 327–356.
  • [21] Crawford J., Torquato S., Stillinger F.: Aspects of correlation function realizability. J. Chem. Phys. 119(2003), 14.
  • [22] Huang K.: Introduction to Statistical Physics. PWN, Warszawa, 2006 (in Polish).
  • [23] Chae D. C., Ree T., Ree F.H.: Radial distribution functions and equation of state of the hard-disk fluid. J. Chem. Phys. 50(1969), 4, 1581–1589.
  • [24] Smith P.A., Torquato S.: Computer simulation results for the two-point probability function of composite media. J. Comput. Phys. 76(1988), 1, 176–191.
  • [25] Uche O.U., Stillinger F.H., Torquato S.: On the realizability of pair correlation functions. Physicá A 360(2006), 1, 21–36.
  • [26] Meyer S., Song C., Jin Y., Wang K., Makse H.A.: Jamming in two-dimensional packings. Physica A 389(2010), 22, 5137–5144.
  • [27] Ueda T., Matsushima T., Yamada Y.: Micro structures of granular materials with various grain size distributions. Powder Technol. 217(2012), 533–539.
Uwagi
EN
This work has been supported by the Polish National Centre for Research and Development within European Regional Development Fund under the Operational Program Innovative Economy No POIG.01.01.02-00-097/09 ‘TERMET – New structural materials with enhanced thermal conductivity’.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea37f368-ab68-44ac-bf58-a0b1d15e3a8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.