PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern methods of surface modification for new-generation titanium alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The constantly growing need for the use of implants in osteotomy is mainly due to the aging population and the need for long-term use of this type of biomaterials. Improving implant materials requires the selection of appropriate functional properties. Currently used titanium (Ti) alloys, such as Ti6Al4V and Ti6Al7Nb, are being replaced by materials with better biocompatibility, such as vanadium(V) or niobium (Nb), allowing for creation of the so-called new generation alloys. These new alloys, with the incorporation of zirconium (Zr), iron, and tantalum, possess Young’s modulus close to that of a bone, which further improves the improves the biomaterial’s. biocompatibility. This article describes the atomic layer deposition (ALD) method and its possible applications in the new generation of titanium alloys for biomedical applications. Also, the exemplary results of tin oxide (SnO2) thin coatings deposited by ALD and physical vapor deposition (PVD) methods are presented. This study aimed to evaluate the physicochemical properties of a Ti13Nb13Zr alloy used for elements in the skeletal system. As the temperature and the number of cycles vary, the results demonstrate that the surface area of the samples changes. The uncoated Ti13Nb13Zr alloy exhibits hydrophilic properties. However, all coated specimens improve in this respect and provide improved clinical results. after the applied modification, the samples have a smaller contact angle, but still remain in the range of 0–90°, which makes it possible to conclude that their nature remains hydrophilic. Coating the specimens decreased the mineralization risk of postoperative complications. As a result, the biomaterials demonstrated improved effectiveness, decreased complication indicators, and improved patient well-being.
Rocznik
Strony
147--158
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
autor
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
autor
  • Fabryka Narzędzi Medycznych CHIRMED Marcin Dyner, Rudniki, Poland.
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland.
Bibliografia
  • [1] ARAVINDAN V., JINESH K.B., PRABHAKAR R.R., KALE V.S., MADHAVI S., Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries, Nano Energy, 2013, 2, 720–725, DOI: 10.1016/j.nanoen.2012.12.007.
  • [2] BANSAL P., SINGH G., SIDHU H.S., Improvement of Surface properties and corrosion resistance of Ti13Nb13Zr titanium alloy by plasma-sprayed HA/ZnO coatings for biomedical applications, Mater. Chem. Phys., 2021, 30 (3), 257, DOI: 10.1016/j.matchemphys.2020.123738.
  • [3] BANSAL P., SINGH G., SIDHU H.S., Plasma-Sprayed Hydroxyapatite-Strontium Coating for Improved Corrosion Resistance and Surface Properties of Biodegradable AZ31 Mg Alloy for Biomedical Applications, J. Mater. Eng. Perform., 2021, 30, 1768–1779, DOI: 10.1007/s11665-021-05490-0.
  • [4] BHALSHANKAR S., Application of Nano Technology, [in:] Biomedical Engineering EasyChair, 2021.
  • [5] HACKING S.A., ZURAW M., HARVEY E.J., TANZER M., KRYGIER J.J., BOBYN J.D., A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography, J. Biomed. Mater. Res., Part A, 2007, 82 (1), 179–187, https://doi.org/10.1002/jbm.a.31131
  • [6] HUSSEIN M.A., YILBAS B., KUMAR A.M., DREW R., AL-AQEELI N., Influence of Laser Nitriding on the Surface and Corrosion Properties of Ti-20Nb-13Zr Alloy in Artificial Saliva for Dental Applications, J. Mater. Eng. Perform., 2018, 27 (9), 4655–4664, https://doi.org/10.1007/s11665-018-3569-2
  • [7] KIERAT O., DUDEK A., ADAMCZYK L., The effect of the corrosion medium on silane coatings deposited on titanium grade 2 and titanium alloy Ti13Nb13Zr, Mater., 2022, 14 (21), https://doi.org/10.3390/ma14216350
  • [8] KOPOVA I., STRÁSKÝ J., HARCUBA P., LANDA M., JANEČEK M., BAČÁKOVA L., Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility, Mater. Sci. Eng. C, 2016, 60, 230–238, https://doi.org/10.1016/J.MSEC.2015.11.043
  • [9] KURODA D., NIINOMI M., MORINAGA M., KATO Y., YASHIRO T., Design and mechanical properties of new β type titanium alloys for implant materials, Mater. Sci. Eng. A, 1998, 243 (1–2), 244–249, https://doi.org/10.1016/S0921-5093(97)00808-3.
  • [10] LISOŃ J., TARATUTA A., PASZENDA Z., DYNER M., BASIAGA M., A study on the physicochemical properties of surface modified Ti13Nb13Zr alloy for skeletal implants, Acta Bioeng. Biomech., 2022, 24 (1), 39–47, DOI: 10.37190/ABB-01919-2021-04.
  • [11] LIU X., CHU P.K., DING C., Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R Rep., 2004, 47 (3–4), 49–121, https://doi.org/10.1016/J.MSER.2004.11.001
  • [12] MORINAGA M., KATO M., KAMIMURA T., FUKUMOTOM M., HARADA I., KUBO K., Theoretical design of β-type titanium alloys, Titanium 1992, Science and Technology, Proc. 7th Int. Conf. on Titanium, San Diego, CA, USA, June 29–July 2, 1992, 276–283.
  • [13] NIINOMI M., LIU Y., NAKAI M., LIU H., LI H., Biomedical titanium alloys with Young’s moduli close to that of cortical bone, Regen. Biomater., 2016, 3 (3), 173–185, https://doi.org/10.1093/rb/rbw016
  • [14] PAWŁOWSKI Ł., ROŚCISZEWSKA M., MAJKOWSKA-MARZEC B., JAŻDŻEWSKA M., BARTMAŃSKI M., ZIELIŃSKI A., TYBUSZEWSKA N., SAMSEL P., Influence of Surface Modification of Titanium and Its Alloys for Medical Implants on Their Corrosion Behavior, Mater., 2022, 15 (21), 7556, https://doi.org/10.3390/ma15217556
  • [15] PIOTROWSKA K., GRANEK A., MADEJ M., Assessment of Mechanical and Tribological Properties of Diamond-Like Carbon Coatings on the Ti13Nb13Zr Alloy, Open Eng., 2020, 10 (1), 536–545, https://doi.org/10.1515/eng-2020-0043.
  • [16] QUINN J., MCFADDEN R., CHAN C.W., CARSON L., Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation, iScience, 2020, 23 (11), 101745, DOI: 10.1016/j.isci.2020.101745.
  • [17] SEMLITSCH M., STAUB F., WEBER H., Titanium-Aluminium- Niobium Alloy, Development for Biocompatible, High Strength Surgical Implants – Titan-Aluminium-Niob-Legierung, entwickelt für körperverträgliche, hochfeste Implantate in der Chirurgie", BMT, 2009, 30 (12), 334–339, https://doi.org/10.1515/bmte.1985.30.12.334
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea33a482-71bd-4b35-90ed-1f37f8db8aa8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.