PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research trends in brazing and soldering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Trendy badawcze w procesach lutowania miękkiego i twardego
Języki publikacji
EN
Abstrakty
EN
Brazing has a long tradition at the Institute of Material Science and Engineering of the University of Chemnitz, Germany. During the last years, comprehensive and innovative knowledge in brazing and soldering technologies were generated. Originating from high-temperature brazing, topics like metal-ceramic and light metal brazing, ultrasound assisted joining processes through to brazing of metal matrix composites were examined. In addition, new topics like joining by nanoparticles or corrosion behavior of brazed heat exchangers are in the focus of research. Prof. Bernhard Wielage managed the institute for 22 years. Today, Prof. Guntram Wagner introduces new topics like friction stir welding and continues the activities in brazing.
PL
Tradycje związane z tematyką lutowania twardego w Instytucie Materiałoznawstwa i Inżynierii Uniwersytetu w Chemnitz (Niemcy) są długie. W ciągu ostatnich lat wygenerowano kompleksową i innowacyjną wiedzę dotyczącą technologii lutowania miękkiego i twardego. Zajmowano się problematyką badawczą wywodzącą się od lutowania wysokotemperaturowego, taką m.in. jak: lutowanie twarde metali lekkich z ceramiką i wspomaganie procesu spajania ultradźwiękami w lutowaniu kompozytów metalowych. Obecnie przedmiotem badań są nowe zagadnienia, takie jak: spajanie nanocząsteczkami oraz zachowanie odporności korozyjnej wymienników ciepła lutowanych na twardo. Profesor Bernhard Wielage zarządzał Instytutem przez ostatnie 22 lata. Obecnie, nowy Dyrektor Instytutu Profesor Guntram Wagner zajmuje się takimi zagadnieniami, jak np. zgrzewaniem tarciowym z wymieszaniem materiału zgrzeiny (FSW) i kontynuuje prace badawcze związane z lutowaniem twardym.
Rocznik
Strony
37--44
Opis fizyczny
Bibliogr. 64 poz., il., tab.
Twórcy
autor
  • Chemnitz University of Technology
autor
  • Chemnitz University of Technology
autor
  • Chemnitz University of Technology
autor
  • Chemnitz University of Technology
autor
  • Chemnitz University of Technology
autor
  • Chemnitz University of Technology
autor
  • Chemnitz University of Technology
Bibliografia
  • [1] Lechner C., Seume J.: Stationäre Gasturbinen, Springer-Verlag, 2010.
  • [2] Adam, P.: Fertigungsverfahren von Turbo ugtriebwerken, Birkhäuser-Verlag, 1998.
  • [3] Campbell F. C.: Elements of metallurgy and engineering alloys, ASM International, 2008.
  • [4] Heikinheimo L., Miglietti W. et al : Brazing of Co- and Ni-based superalloys using new amorphous brazing filler metals, DVS-Berichte 212, pp. 30-34, 2001.
  • [5] Greaves W.: Cost effective repairs for IGT vanes, Proceedings of the 3rd IBSC, pp. 392-394, 2006.
  • [6] Falkenberg S., Watermeyer K.: Die Untersuchung des Lötverhaltens von auf Ti-Al-Phasen aufgebauten Hochtemperaturwerkstoffen, Sonderbände der Praktischen Metallographie, pp. 401-404, 1995.
  • [7] Donachie M. J., Donachie S. J.: Superalloys: a technical guide, ASM International, 2002.
  • [8] Uhlig T., Weis S. et al: Co-based brazing fillers. Welding Technology Review, pp. 64-67, 2013.
  • [9] Shurin A.K., DmitrievaG. P.et al: Phase equilibria in Co-Me′C-Me′′C alloys. 1: Systems with three-phase eutectic equilibrium, Powder Metallurgy and Metal Ceramics, pp. 615-620, 1996.
  • [10] Shurin A. K., Dmitrieva G. P. et al: Phase Equilibria in Co-Me’C-Me’’C alloys. II: Systems with four-phase eutectic equilibrium, Powder Metallurgy and Metal Ceramics, pp. 193-196, 1997.
  • [11]Uhlig T., Weis S., Schuberth S., Wagner G., Wielage B.: Entwicklung von Cobaltbasisloten zum Hochtemperaturlöten hochfester Cobaltbasislegierungen, Schweißen und Schneiden Band 68, 2016, Heft 5, S. 260-265, ISSN: 0036-7184.
  • [12] Ishida K., Nishizawa T.: The Co-Ni (Cobalt-Nickel) System, Bulletin of Alloy Phase Diagrams, pp. 390-395, 1983.
  • [13] Sekulic D.: Advances in Brazing: Science, Technology and Applications, Elsevier, 2013.
  • [14] Wheaton H. L.: MAR-M 509, a new cast cobalt-base alloy for high-temperature service, Cobalt, 1965, pp. 163-170.
  • [15] Davies J. R.: Nickel, cobalt and their alloys, ASM International, 2000.
  • [16] Xiu Z., Yang W., Chen G., Jiang L., Mac K., Wu G.: Microstructure and tensile properties of Si3N4p/2024Al composite fabricated by pressure infiltration method. Mat. a. Designs 33, 2012, pp. 350-358.
  • [17] Sajjadi S.A., Ezatpour H.R., Parizi M.T.: Comparison of microstructure and mechanical properties of A356 aluminium alloy/Al2O3 composites fabricated by stir and compo-casting processes, Mat. a. Designs 34, 2012, pp. 106-111.
  • [18] Qu X-h., Zhang L., Wu M., Ren S.-b.: Review of metal matrix composites with high thermal conductivity for thermal management applications. Progress in Natural Science: Materials International 21, 2011, pp. 189/97.
  • [19] Ureña A., Escalera M.D., Gil L.: Influence of interface reactions on fracture mechanisms in TIG arc-welded aluminium matrix composites, Comp. Scien. a. Tech. 60, 2000, pp. 613-622.
  • [20] Steiners M., Höcker F.: Einfluss der Beschichtungen beim stoffschlüssigen Lichtbogen-fügen von Stahl mit Aluminium, Mat. u. Werkst. 38, 2007, pp. 559-564.
  • [21] Elßner M., Weis S., Grund T., Hausner S., Wielage B., Wagner G.: Lichtbogenlöten von Aluminiummatrix-Verbundwerkstoffen mit AlAgCu-Loten, Werkstoffe und werkstofftechnische Anwendungen 52, 2014, ISBN 978- 3-00-046877-3.
  • [22] Weis S., Elßner M., Fedorov V., Habisch S., Wagner G., Mayr P.: Innovative joining technologies for mixed joints of stainless steel and aluminum or aluminum based composites, DVS-Berichte, Band 323, 2016, ISBN 978-3- 945023-62-4.
  • [23] Suzuki T., Effenberg G.: The binary system Ag-Al. MSIT® MSI Eureka in Springer Materials, 1988.
  • [24] Elßner M., Weis S., Grund T., Wagner G., Habisch S. and Mayr P.: Microstructure of arc brazed and diffusion bonded joints of stainless steel and SiC reinforced aluminum matrix composite. Werkstoffe und werkstofftechnische Anwendungen 59 (2016), ISBN 978-3-00-052212-3.
  • [25] Potesser M., Schoeberl T., Antrekowitsch H., Bruckner J.: The characterization of the intermetallic Fe-Al layer of steel-aluminum weldings, Conference proceedings EPD Congress,2006, pp. 167-176.
  • [26] Sicking R.: Walzprodukte für die Herstellung von Aluminium-Wärmetauschern, Werkstoffwissen-schaftliche Schriftreihe 61, 200, pp. 60-72.
  • [27] Nordlien, J. H.: Organically bound braze coatings for header to tube joint formation. In Proceedings 3, International Congress Aluminium Brazing, 2004.
  • [28] Fedorov V.; Weis S.; Wagner G.: Mechanical and microstructural behavior of brazed aluminum / stainless steel mixed joints, IOP Conference Series: Materials Science and Engineering, Vol. 118. No. 1. IOP Publishing, 2016.
  • [29] Fedorov V., Weis S., Wagner G.: Fatigue behavior of brazed aluminum / stainless steel mixed joints. DVS-Berichte, Band 323, 2016, ISBN 978-3-945023-62-4.
  • [30] Fedorov V., Elßner M., Weis S., Wagner G.: Mechanical properties of brazed aluminum / stainless steel mixed joints. Presentation, International Conference LÖT 2016, Aachen, 2016.
  • [31] Hausner S.: Potential von Nanosuspensionen zum Fügen bei niedrigen Temperaturen. Dissertaion, Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen 56, 2015, ISSN: 1439-1597.
  • [32] Hausner S., Weis S., Wielage B., Wagner G.: Low temperature joining of copper by Ag Nanopaste: Correlation of mechanical properties and process parameters, Submitted for publication: Welding in the world, 2016.
  • [33] Calata J.N., Lei T.G., Lu G.-Q.: Sintered nanosilver paste for high-temperature power semiconductor device attachment, International Journal of Materials and Product Technology 34, 2009, pp. 95-110.
  • [34] Wang T.; Chen X.; Lu G.-Q.; Lei G.Y.: Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection, Journal of Electronic Materials 36, 2007, pp. 1333-1340.
  • [35] Ide E., Angata S., Hirose A., Kobayashi K.F.: Metal-metal bonding process using Ag metallo-organic nanoparticles, Acta Materialia 53, 2005, pp. 2385-2393.
  • [36] Ogura T., Yagishita T., Takata S., Fujimoto T., Hirose A.: Bondability of copper joints formed using a mixed paste of Ag2O and CuO for low-temperature sinter bonding. Materials Transactions 54, 2013, pp. 860-865.
  • [37] Hu A., Guo J.Y., Alarifi H., Patane G.; Zhou Y.N., Compagnini G., Xu C.X.: Low temperature sintering of Ag nanoparticles for flexible electronics packaging, Applied Physics Letters 97, 2010, pp. 1531171-1531173.
  • [38] Alarifi H., Hu A., Yavuz M., Zhou Y.N.: Silver Nanoparticle Paste for Low- temperature Bonding of Copper, Journal of Electronic Materials 40, 2011, pp. 1394-1402.
  • [39] Yan J., Zou G., Wu A., Ren J., Yan J., Hu A., Zhou Y. N.: Pressureless bonding process using Ag nanoparticle paste for exible electronics packaging. Scripta Materialia 66, 2012, pp. 582-585
  • [40] Boretius M., Lugscheider E., Tillmann W.: Fü-gen von Hochleistungskeramik: Verfahren - Auslegung, Prüfung – Anwendung, Düsseldorf: VDI-Verlag, 1995 – ISBN 3-18-401272-7.
  • [41] Wielage B., Hoyer I., Hausner S.: Induktives Löten von Metall mit Aluminiumoxid und Zirkonoxid. Schweißen und Schneiden 43, 2012, pp. 656-660.
  • [42] Nagasawa H., Maruyama M., Komatsu T., Iso-da S.: Physical Characteristics of Stabilized Silver Nanoparticles Formed Using a New Thermal- Decomposition Method, physica status solidi (a) 191, 2002, pp. 67-76.
  • [43] Jiang H., Moon K.-S., Lu J., Wong C. P.: Con-ductivity Enhancement of Nano Silver-Filled Conductive Adhesives by Particle Surface Functionalization, Journal of Electronic Materials 34, 2005 , pp. 1432-1439.
  • [44] Mathews N. et al: Printing materials for electronic devices, International Journal of Materials Research, Vol. 101, 2010, 236-250.
  • [45] Kim J.-W. et al: Electrical characterization of screen-printed conductive circuit with silver nanopaste, Japanese Journal of Applied Physics, Part 1, Vol. 48, 2009, 06FD14/1-6.
  • [46] Fahrenwaldt H.J., Schuler V., Twrdek J.: Pra-xiswissen Schweißtechnik, Wiesbaden:Springer Vieweg, 2014. – ISBN 978-3-6580-3141-1.
  • [47] Cox D.C., Roebuck B., Rae C.M.F., Reed R.C.: Recrystallisation of single crystal superalloy CMSX-4, Materials Science and Technology Conference 19, 2003, pp. 440-446.
  • [48] Benninghoff H.: Loeten von Kupfer und Kupferlegierungen, Technische Rundschau 76, 1984, pp. 12-14.
  • [49] Müller W., Müller J.-U.: Löttechnik: Leitfaden für die Praxis, Düsseldorf: DVS-Verlag, 1995. – ISBN 3-87155-149-X.
  • [50] Hausner S., Weis S., Wagner G.: Joining of steels at low temperatures by Ni nanoparticles, DVS-Berichte Band 325, 2016, pp. 278-284, ISBN 978-3-945023-64-8
  • [51] Heumann T.: Diffusion in Metallen. Berlin, Heidelberg, New York: Springer- Verlag, 1992. – ISBN 3-540-55379-7.
  • [52] Dean D.C., Goldstein J.I.: Determination of the Interdiffusion Coefficients in the Fe-Ni and Fe-Ni-P Systems below 900 °C, Metallurgical Transactions A (Physical Metallurgy and Materials Science) 17, 1986, pp. 1131-1138
  • [53] Oehmigen H.-G.: Produktionstechnik in der Wärmeübertragerfertigung, Verlag Publico, pp. 6-18, Essen 2009.
  • [54] Wielage B., Weis S., Uhlig T., Fedorov V.: Löten von Wärmeübertragern aus Al, Cu und Edelstahl, DVS-Berichte Band 315, pp. 438-443, 2015.
  • [55] Baskutis S.: Mechanics and material aspects in serviceability prediction of the heat exchangers, Mechanics 17, pp. 239-245, 2011.
  • [56] Stichel W.: Korrosionsprobleme mit gelöteten Plattenwärmetauschern aus nichtrostendem Stahl, IKZ Haustechnik 15, pp. 27-33, 1998.
  • [57] Ehreke J.: Messung der Kupfer-Ionenkonzentration in Stagnationswässern aus kupfergelöteten Plattenwärme-übertragern, Materials and Corrosion 49, pp. 195-197, 1998.
  • [58] Pajonk G.: Korrosionsschäden an kupfergelöteten Plattenwärmetauschern, 2004.
  • [59] Köhler S., Schäden an gelöteten Plattenwärmetauschern bei der Erwärmung von Trinkwasser, Materials and Corrosion 50, pp. 227-232, 1999.
  • [60] DVGW W10/01/05: Schwermetallmigration aus Bauteilen der Trinkwassererwärmung, 2009.
  • [61] Kurihara K.: Grain boundary engineering of titanium-stabilized 321 austenitic stainless steel, Journal of materials science 46, pp. 4270-4275, 2011.
  • [62] Michiuchi M.: Twin-induced grain boundary engineering for 316 austenitic stainless steel, Acta materialia 54, pp. 5179-5184, 2006.
  • [63] Shimada M.: Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering, Acta Materialia 50, pp. 2331-2341, 2002.
  • [64] Uhlig T., Weis S., Wagner G.: Influence of thermomechanical treatment on the liquid metal embrittlement of copper-brazed plate heat exchangers, DVS-Berichte Band 325, 2016, pp. 278-284, ISBN 978-3-945023-64-8
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea3095cc-6d11-4275-939b-05f909cf8ea4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.