Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Effects of microstructure factors on the acoustic performance of open-cell foams can be characterized numerically by a microstructure-based approach. To this regard, the numerical homogenization approach and the equivalent-fluid theory are employed to study the acoustic behavior of random open-cell foams within their Voronoi tessellation-based Representative Volume Elements (RVE). As a validation step, the numerical predictions are compared with the reference findings to either verify the finite element procedure or demonstrate that the constructed RVE can capture both the local geometrical characteristics and the acoustic macrobehavior of cellular solid foams. It can be seen from the obtained results that the morphological characteristics of open-cell foams could be controlled to achieve the desired sound absorbing behavior. In addition, the analytical expressions, formulating the relationship between the geometry of foam absorbers and their target absorption performance, are established to design sound absorbing foam layers.
Wydawca
Czasopismo
Rocznik
Tom
Strony
501--512
Opis fizyczny
Bibliogr. 49 poz., fot., rys., tab., wykr.
Twórcy
autor
- Faculty of Vehicle and Energy Engineering, Le Quy Don Technical University Ha Noi, Vietnam
autor
- Academy of Science and Technology Ha Noi, Vietnam
autor
- Faculty of Information Technology, Hanoi University of Civil Engineering Ha Noi, Vietnam
autor
- Faculty of Vehicle and Energy Engineering, Le Quy Don Technical University Ha Noi, Vietnam
Bibliografia
- 1. Achdou Y., Avellaneda M. (1992), Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements, Physics of Fluids A: Fluid Dynamics, 4(12): 2651-2673, doi: 10.1063/1.858523.
- 2. Allard J., Atalla N. (2009), Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd ed., John Wiley & Sons, Chichester.
- 3. Allard J.F., Champoux Y. (1992), New empirical equations for sound propagation in rigid frame fibrous materials, The Journal of the Acoustical Society of America, 91(6): 3346-3353, doi: 10.1121/1.402824.
- 4. Archie G.E. (1942), The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME, 146(01): 54-62.
- 5. Auriault J.L., Boutin C., Geindreau C. (2010), Homogenization of Coupled Phenomena in Heterogenous Media, Vol. 149, John Wiley & Sons, doi: 10.1002/9780470612033.
- 6. Avellaneda M., Torquato S. (1991), Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media, Physics of Fluids A: Fluid Dynamics, 3(11): 2529-2540, doi: 10.1063/1.858194.
- 7. Boutin C., Geindreau C. (2008), Estimates and bounds of dynamic permeability of granular media, The Journal of the Acoustical Society of America, 124(6): 3576-3593, doi: 10.1121/1.2999050.
- 8. Brakke K.A. (1992), The surface evolver, Experimental Mathematics, 1(2): 141-165, doi: 10.1080/10586458.1992.10504253.
- 9. Buffel B., Desplentere F., Bracke K., Verpoest I. (2014), Modelling open cell-foams based on the Weaire-Phelan unit cell with a minimal surface energy approach, International Journal of Solids and Structures, 51(19-20): 3461-3470, doi: 10.1016/j.ijsolstr.2014.06.017.
- 10. Champoux Y., Allard J.F. (1991), Dynamic tortuosity and bulk modulus in air-saturated porous media, Journal of Applied Physics, 70(4): 1975-1979, doi: 10.1063/1.349482.
- 11. Chevillotte F., Perrot C. (2017), Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study, The Journal of the Acoustical Society of America, 142(2): 1130-1140, doi: 10.1121/1.4999058.
- 12. Costa A. (2006), Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption, Geophysical Research Letters, 33(2): L02318, doi: 10.1029/2005GL025134.
- 13. Dib L., Bouhedja S., Amrani H. (2015), Mechanical parameters effects on acoustic absorption at polymer foam, Advances in Materials Science and Engineering, 2015: 896035, doi: 10.1155/2015/896035.
- 14. Doutres O., Atalla N., Dong K. (2011), Effect of the microstructure closed pore content on the acoustic behavior of polyurethane foams, Journal of Applied Physics, 110(6): 064901, doi: 10.1063/1.3631021.
- 15. Doutres O., Atalla N., Dong K. (2013), A semiphenomenological model to predict the acoustic behavior of fully and partially reticulated polyurethane foams, Journal of Applied Physics, 113(5): 054901, doi: 10.1063/1.4789595.
- 16. Fahy F.J. (2000), Foundations of Engineering Acoustics, Academic Press.
- 17. Gao K., van Dommelen J.A.W., Geers M.G.D. (2016), Microstructure characterization and homogenization of acoustic polyurethane foams: measurements and simulations, International Journal of Solids and Structures, 100: 536-546, doi: 10.1016/j.ijsolstr.2016.09.024.
- 18. Gasser S., Paun F., Bréchet Y. (2005), Absorptive properties of rigid porous media: application to face centered cubic sphere packing, The Journal of the Acoustical Society of America, 117(4): 2090-2099, doi: 10.1121/1.1863052.
- 19. Ghossein E., Lévesque M. (2012), A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites, International Journal of Solids and Structures, 49(11-12): 1387-1398, doi: 10.1016/j.ijsolstr.2012.02.021.
- 20. Jafari M.J., Khavanin A., Ebadzadeh T., Fazlali M., Sharak M.N., Madvari R.F. (2020), Optimization of the morphological parameters of a metal foam for the highest sound absorption coefficient using local search algorithm, Archives of Acoustics, 45(3): 487-497, doi: 10.24425/aoa.2020.134066.
- 21. Jodrey W.S., Tory E.M. (1981), Computer simulation of isotropic, homogeneous, dense random packing of equal spheres, Powder Technology, 30(2): 111-118, doi: 10.1016/0032-5910(81)80003-4.
- 22. Jodrey W.S., Tory E.M. (1985), Computer simulation of close random packing of equal spheres, Physical Review A, 32(4): 2347, doi: 10.1103/PhysRevA.32.2347.
- 23. Johnson D.L., Koplik J., Dashen R. (1987), Theory of dynamic permeability and tortuosity in fluidsaturated porous media, Journal of Fluid Mechanics, 176(1): 379-402, doi: 10.1017/S0022112087000727.
- 24. Köll J., Hallström S. (2014), Generation of periodic stochastic foam models for numerical analysis, Journal of Cellular Plastics, 50(1): 37-54, doi: 10.1177/0021955X13503848.
- 25. Kraynik A.M., Reinelt D.A., van Swol F. (2003), Structure of random monodisperse foam, Physical Review E, 67(3): 031403, doi: 10.1103/PhysRevE.67.031403.
- 26. Kraynik A.M., Reinelt D.A., van Swol F. (2004), Structure of random foam, Physical Review Letters, 93(20): 208301, doi: 10.1103/PhysRevLett.93.208301.
- 27. Lafarge D. (1993), Sound propagation in porous materials with a rigid structure saturated by a viscothermal fluid: Definition of geometric parameters, electromagnetic analogy, relaxation time [in French: Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique: Définition de paramètres géométriques, analogie electromagnétique, temps de relaxation], PhD thesis, Le Mans.
- 28. Lafarge D. (2009), The equivalent fluid model, [in:] Materials and Acoustics Handbook, M. Bruneau, C. Potel [Eds], Wiley Online Library, doi: 10.1002/9780470611609.ch6.
- 29. Lafarge D., Lemarinier P., Allard J.F., Tarnow V. (1997), Dynamic compressibility of air in porous structures at audible frequencies, The Journal of the Acoustical Society of America, 102(4): 1995-2006, doi: 10.1121/1.419690.
- 30. Lai H., Gentry-Grace C., Bonilha M., Yoerkie C. (2000), Experimental characterization of materials for acoustic performance with applications, Proceedings of InterNoise 2000, pp. 27-30.
- 31. Langlois V., Kaddami A., Pitois O., Perrot C. (2020), Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study, The Journal of the Acoustical Society of America, 148(3): 1767-1778, doi: 10.1121/10.0001995.
- 32. Lee C.Y., Leamy M.J., Nadler J.H. (2009), Acoustic absorption calculation in irreducible porous media: a unified computational approach, The Journal of the Acoustical Society of America, 126(4): 1862-1870, doi: 10.1121/1.3205399.
- 33. Matzke E.B. (1945), The three-dimensional shapes of bubbles in foams, Proceedings of the National Academy of Sciences, 31(9): 281-289, doi: 10.1073/pnas.31.9.28.
- 34. Matzke E.B. (1946), The three-dimensional shape of bubbles in foam-an analysis of the role of surface forces in three-dimensional cell shape determination, American Journal of Botany, 33(1): 58-80, doi: 10.1002/j.1537-2197.1946.tb10347.x.
- 35. Nguyen C. et al. (2022), Polydisperse solid foams: Multiscale modeling and simulations of elasto-acoustic properties including thin membrane effects, International Journal of Solids and Structures, 249: 111684, doi: 10.1016/j.ijsolstr.2022.111684.
- 36. Okabe A., Boots B., Sugihara K., Chiu S.N. (1992), Spatial Tessellations. Concepts and Applications of Voronoi Diagrams, John Wiley and Sons, Inc.
- 37. Olny X., Panneton R. (2008), Acoustical determination of the parameters governing thermal dissipation in porous media, The Journal of the Acoustical Society of America, 123(2): 814-824, doi: 10.1121/1.2828066.
- 38. Panneton R., Olny X. (2006), Acoustical determination of the parameters governing viscous dissipation in porous media, The Journal of the Acoustical Society of America, 119(4): 2027-2040, doi: 10.1121/1.2169923.
- 39. Park J.H. et al. (2017a), Cell openness manipulation of low density polyurethane foam for efficient sound absorption, Journal of Sound and Vibration, 406: 224-236, doi: 10.1016/j.jsv.2017.06.021.
- 40. Park J.H. et al. (2017b), Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling, Journal of Sound and Vibration, 397: 17-30, doi: 10.1016/j.jsv.2017.03.004.
- 41. Perrot C., Chevillotte F., Panneton R. (2008), Bottom-up approach for microstructure optimization of sound absorbing materials, The Journal of the Acoustical Society of America, 124(2): 940-948, doi: 10.1121/1.2945115.
- 42. Perrot C. et al. (2012), Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations, Journal of Applied Physics, 111(1): 014911, doi: 10.1063/1.3673523.
- 43. Perrot C., Panneton R., Olny X. (2007), Periodic unit cell reconstruction of porous media: Application to open-cell aluminum foams, Journal of Applied Physics, 101(11): 113538, doi: 10.1063/1.2745095.
- 44. Rubinstein J., Torquato S. (1988), Diffusion-controlled reactions: Mathematical formulation, variational principles, and rigorous bounds, The Journal of Chemical Physics, 88(10): 6372-6380, doi: 10.1063/1.454474.
- 45. Trinh V.H., Guilleminot J., Perrot C. (2018), On the construction of multiscale surrogates for design optimization of acoustical materials, Acta Acustica united with Acustica, 104(1): 1-4, doi: 10.3813/AAA.919139.
- 46. Trinh V.H., Langlois V., Guilleminot J., Perrot C., Khidas Y., Pitois O. (2019), Tuning membrane content of sound absorbing cellular foams: Fabrication, experimental evidence and multiscale numerical simulations, Materials and Design, 162: 345-361, doi: 10.1016/j.matdes.2018.11.023.
- 47. Vu V.D., Panneton R., Gagné R. (2019), Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach, The Journal of the Acoustical Society of America, 145(6): 3606-3624, doi: 10.1121/1.5111753.
- 48. Weaire D., Phelan R. (1994), A counter-example to Kelvin’s conjecture on minimal surfaces, Philosophical Magazine Letters, 69(2): 107-110, doi: 10.1080/09500839408241577.
- 49. Yang X., Lu T.J., Kim T. (2014), An analytical model for permeability of isotropic porous media, Physics Letters A, 378(30-31): 2308-2311, doi: 10.1016/j.physleta.2014.06.002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea306e5a-60f7-4b72-96dc-fe10b0d40a60