PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of Procedures and Solutions to Improve Energy Efficiency of Massive MIMO

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The blustery growth of high data rate applications leads to more energy consumption in wireless networks to satisfy service quality. Therefore, energy-efficient communications have been paid more attention to limited energy resources and environmentally friendly transmission functioning. Countless publications are present in this domain which focuses on intensifying network energy efficiency for uplink-downlink transmission. It is done either by using linear precoding schemes, by amending the number of antennas per BS, by power control problem formulation, antenna selection schemes, level of hardware impairments, and by considering cell-free (CF) Massive-MIMO. After reviewing these techniques, still there are many barriers to implement them practically. The strategies mentioned in this review show the performance of EE under the schemes as raised above. The chief contribution of this work is the comparative study of how Massive MIMO EE performs under the background of different methods and architectures and the solutions to few problem formulations that affect the EE of network systems. This study will help choose the best criteria to improve EE of Massive MIMO while formulating a newer edition of testing standards. This survey provides the base for interested readers in energy efficient Massive MIMO.
Rocznik
Strony
677--686
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Gujarat Technological University,Ahmedabad, India
autor
  • Parul University, Vadodara, India
Bibliografia
  • [1] A. Abrol and R. K. Jha, “Power Optimization in 5G Networks: A Step Towards GrEEn Communication,” IEEE Access, vol. 4, pp. 1355-1374, 2016, https://doi.org/10.1109/ACCESS.2016.2549641.
  • [2] R. M. Asif, J. Arshad, M. Shakir, S. M. Noman, and A. U. Rehman, “Energy Efficiency Augmentation in Massive MIMO Systems through Linear Precoding Schemes and Power Consumption Modeling,” Wirel. Commun. Mob. Comput., vol. 2020, 2020, https://doi.org/10.1155/2020/8839088.
  • [3] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO Networks,” Found. Trends Signal Process., vol. 11, no. 3-4, pp. 154-655, 2017, https://doi.org/10.1561/2000000093.Simulation.
  • [4] S. Buzzi, I. Chih-Lin, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, “A survey of energy-efficient techniques for 5G networks and challenges ahead,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 697-709, 2016, https://doi.org/10.1109/JSAC.2016.2550338.
  • [5] R. Chataut and R. Akl, “Massive MIMO systems for 5G and beyond networks-overview, recent trends, challenges, and future research direction,” Sensors (Switzerland), vol. 20, no. 10, pp. 1–35, 2020, https://doi.org/10.3390/s20102753.
  • [6] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: Ten myths and one critical question,” IEEE Commun. Mag., vol. 54, no. 2, pp. 114-123, 2016, https://doi.org/10.1109/MCOM.2016.7402270.
  • [7] V. Jamali, A. M. Tulino, G. Fischer, R. Muller, and R. Schober, “Scalable and Energy-Efficient Millimeter Massive MIMO Architectures: Reflect-Array and Transmit-Array Antennas,” IEEE Int. Conf. Commun., vol. 2019-May, pp. 1-7, 2019, https://doi.org/10.1109/ICC.2019.8761603.
  • [8] G. Interdonato, E. Björnson, H. Quoc Ngo, P. Frenger, and E. G. Larsson, “Ubiquitous cell-free Massive MIMO communications,” Eurasip J. Wirel. Commun. Netw., vol. 2019, no. 1, 2019, https://doi.org/10.1186/s13638-019-1507-0.
  • [9] W. Tan, D. Xie, J. Xia, W. Tan, L. Fan, and S. Jin, “Spectral and Energy Efficiency of Massive MIMO for Hybrid Architectures Based on Phase Shifters,” IEEE Access, vol. 6, no. c, pp. 11751-11759, 2018, https://doi.org/10.1109/ACCESS.2018.2796571.
  • [10] M. Cui, B. J. Hu, X. Li, H. Chen, S. Hu, and Y. Wang, “Energy-Efficient Power Control Algorithms in Massive MIMO Cognitive Radio Networks,” IEEE Access, vol. 5, no. c, pp. 1164-1177, 2017, https://doi.org/10.1109/ACCESS.2017.2652441.
  • [11] W. B. Hasan, L. Li, G. Oikonomou, and M. Beach, “Radio resource allocation between massive MIMO and LTE using SDN,” IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, vol. 2020-Augus, no. Dl, 2020, https://doi.org/10.1109/PIMRC48278.2020.9217374.
  • [12] K. Senel, E. Bjornson, and E. G. Larsson, “Joint Transmit and Circuit Power Minimization in Massive MIMO with Downlink SINR Constraints: When to Turn on Massive MIMO?,” IEEE Trans. Wirel. Commun., vol. 18, no. 3, pp. 1834-1846, 2019, https://doi.org/10.1109/TWC.2019.2897655.
  • [13] X. Zhou, B. Bai, and W. Chen, “Invited Paper: Antenna selection in energy efficient MIMO systems: A survey,” China Commun., vol. 12, no. 9, pp. 162-173, 2015, https://doi.org/10.1109/CC.2015.7275254.
  • [14] X. Gao, O. Edfors, F. Tufvesson, and E. G. Larsson, “Multi-Switch for Antenna Selection in Massive MIMO,” pp. 1-6, 2016, https://doi.org/10.1109/glocom.2015.7417765.
  • [15] M. O. K. Mendonca, P. S. R. Diniz, T. N. Ferreira, and L. Lovisolo, “Antenna selection in massive MIMO based on greedy algorithms,” IEEE Trans. Wirel. Commun., vol. 19, no. 3, pp. 1868-1881, 2020, https://doi.org/10.1109/TWC.2019.2959317.
  • [16] A. Singal and D. Kedia, “Performance analysis of antenna selection techniques in MIMO-OFDM system with hardware impairments: Energy efficiency perspective,” Int. J. Electr. Comput. Eng., vol. 8, no. 4, pp. 2272-2279, 2018, https://doi.org/10.11591/ijece.v8i4.pp.2272-2279.
  • [17] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?,” IEEE Trans. Wirel. Commun., vol. 14, no. 6, pp. 3059-3075, 2015, https://doi.org/10.1109/TWC.2015.2400437.
  • [18] J. Arshad, T. Younas, L. Jiandong, and A. Suryani, “Study on MUMIMO Systems in the Perspective of Energy Efficiency with Linear Processing,” 2018 10th Int. Conf. Commun. Softw. Networks, ICCSN 2018, no. M, pp. 168-172, 2018, https://doi.org/10.1109/ICCSN.2018.8488292.
  • [19] G. Miao, “Energy-efficient uplink multi-user mimo,” IEEE Trans. Wirel. Commun., vol. 12, no. 5, pp. 2302-2313, 2013, https://doi.org/10.1109/TWC.2013.040213.120942.
  • [20] J. Arshad, A. Rehman, A. U. Rehman, R. Ullah, and S. O. Hwang, “Spectral efficiency augmentation in uplink massive mimo systems by increasing transmit power and uniform linear array gain,” Sensors (Switzerland), vol. 20, no. 17, pp. 1-15, 2020, https://doi.org/10.3390/s20174982.
  • [21] A. Kazerouni, F. J. Lopez-Martinez, and A. Goldsmith, “Increasing capacity in massive MIMO cellular networks via small cells,” 2014 IEEE Globecom Work. GC Wkshps 2014, pp. 358-363, 2014, https://doi.org/10.1109/GLOCOMW.2014.7063457.
  • [22] S. Choi and E. R. Jeong, “Digital predistortion based on combined feedback in MIMO transmitters,” IEEE Commun. Lett., vol. 16, no. 10, pp. 1572-1575, 2012, https://doi.org/10.1109/LCOMM.2012.080312.120224.
  • [23] H. Yang and T. L. Marzetta, “Energy Efficiency of Massive MIMO: Cell-Free vs. Cellular,” IEEE Veh. Technol. Conf., vol. 2018-June, no. 1, pp. 1- 5, 2018, https://doi.org/10.1109/VTCSpring.2018.8417645.
  • [24] J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free massive MIMO: A new next-generation paradigm,” IEEE Access, vol. 7, pp. 99878-99888, 2019, https://doi.org/10.1109/ACCESS.2019.2930208.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea2db793-90f8-4bae-8bba-dd41f4bfc9ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.