Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, firstly, a new identity for conformable fractional integrals is established. Then by making use of the established identity, some new fractional Fejér type inequalities are established. The results presented here have some relationships with the results of Set et al. (2015), proved in [6].
Czasopismo
Rocznik
Tom
Strony
145--157
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Arts and Sciences, Ordu University 52200 Ordu, Turkey
autor
- Department of Mathematics, Faculty of Arts and Sciences, Ordu University 52200 Ordu, Turkey
Bibliografia
- [1] Rainville E.D., Special Functions, The Mcmillan Company, New York.
- [2] Fejèr L., Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24(1906), 369-390, (in Hungarian).
- [3] Abdeljawad T., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279(2015), 57-66.
- [4] Iscan I., Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Stud. Univ. Babes-Bolyai Math., 60(3)(2015), 355-366.
- [5] Khalil R., Al Horani M., Yousef A., Sababheh M., A new definition of fractional derivative, J. of Comput. and Appl. Math., 264(2014), 65-70.
- [6] Set E., Îscan I., Sarikaya M.Z., Özdemir M.E., On new inequalities of Hermite-Hadamard-Fejér type for convex functions via fractional integrals, Applied Mathematics and Computation, 259(2015), 875-881.
- [7] Set E., Sarikaya M.Z., Gözpınar A., Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., 26(2)(2017), 223-231.
- [8] Set E., Gözpinar A., Ekinci A., Hermite-Hadamard Type Inequalities Via Conformable Fractional Integrals, Acta Math. Univ. Comenianae, 86(2)(2017), 309-320.
- [9] Set E., Akdemir A.O., Mumcu I., The Hermite-Hadamard’s inequality and its extentions for conformable fractional integrals of any order α > 0, (submitted).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea2d4a8a-8c41-451a-b7fd-e725dd53f38a