PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of forming titanium thin-wall panels with stiffeners

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the increase in the application of titanium components made of thin titanium sheets, in the work titanium panels made of 4 mm thick sheets are analysed. To increase the rigidity of the panels, some cross-shaped stiffeners were made. Such panels enable a reduction in weight while maintaining the existing strength of the drawn parts. Three kinds of commercially pure titanium are considered: Grade 1, 2 and 3. Numerical calculations were performed with PamStamp 2G based on the finite element method. The basic mechanical and technological properties of the analysed sheets, which are necessary for numerical modelling, were determined by static tensile testing. The friction coefficient was assumed based on the literature. On the basis of the performed numerical analyses, it was stated that the proper forming of panels with stiffeners depends not only on the drawability of the sheets but also on the technological parameters such as blank holder force and frictional conditions.
Twórcy
  • Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland
  • Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland
autor
  • CHIRMED Manufacturer of Surgical and Medical Instruments, Mstowska 8A, 42-240 Rudniki-Czestochowa, Poland
autor
  • CHIRMED Manufacturer of Surgical and Medical Instruments, Mstowska 8A, 42-240 Rudniki-Czestochowa, Poland
Bibliografia
  • 1. Adamus J. and Lacki P. Numerical analysis of forming sheet panels with stiffening ribs. Proceedings of the XIII International Conference on Computational Plasticity. Fundamentals and Applications. COMPLAS XIII, E. Oñate, D.R.J. Owen, D. Peric and M. Chiumenti (Eds). Barcelona: CIMNE 2015, 204–215.
  • 2. Adamus J. and Lacki P. Numerical simulation of forming titanium drawn part. Meccanica 51(2), 2016, 391–400.
  • 3. Adamus J., Dyja K. and Więckowski W. Lubricants Based on Vegetable Oils as Effective Lubricating Agents in Sheet-Titanium Forming. Key Engineering Materials 687, 2016, 163–170.
  • 4. Adamus J., Winowiecka J. and Dyner M. Analysis of forming thin titanium panels with stiffeners, Archives of Metallurgy and Materials 62(1), 2017, 175–182.
  • 5. Adamus J.: Applications of titanium sheets in modern building construction. Advanced Materials Re-search, 1020, 2014, 9–14.
  • 6. Adamus J.: Stamping of the titanium sheets. Key Engineering Materials, 410–411, 2009, 279–288.
  • 7. Adib A.M.L., Baptista C.A.R.P., Barboza M.J.R., Haga C. and Marques C.C.F. Aircraft engine bleed system tubes: Material and failure mode analysis. Engineering Failure Analysis 14, 2007, 1605–1617.
  • 8. Badr O.M., Barlat F., Rolfe B., Lee M-G., Hodgson P. and Weiss M. Constitutive modelling of high strength titanium alloy Ti-6Al-4V for sheet forming applications at room temperature. International Journal of Solids and Structures 80, 2016, 334–347.
  • 9. Boyer R.R.: Titanium for aerospace: rationale and application. Advanced Performance Materials 2, 1995, 349–368.
  • 10. Boyer, R. and Williams, J. Developments in research and application in the titanium industry in the USA. Proceedings of the 12th World Conference on Titanium, Beijing, 2011, 10–19.
  • 11. Chartrel B. and Massoni E. Deep drawing of Ti6Al4V: Experiments and modeling over a wide range of strain rates and temperatures. Key Engineering Materials, 554–557, 2013, 190–194.
  • 12. Diamanti M.V., Del Curto B. and Pedeferri M.P. Interference Colors of thin oxide layers on titanium. Color research and application 33(3), 2008, 221–228.
  • 13. Faller K. and Froes F.H. The use of titanium in family automobiles. Journal of Metals, 53(4), 2001, 27–28.
  • 14. Fuji H., Takahashi K. and Yamashita Y. Application of titanium alloys for automobile parts. Nippon Steel Technical Raport no 88 July 2003, 70–75.
  • 15. Hu Z., Wang C., Chen X. and Liu J. A novel forming method for three-dimensional thin sheet metal. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230(9), 2016, 1751–1755.
  • 16. Huanga J., Zhang X., Yan W., Chena Z., Shuai X., Wang A. and Wang Y. Nanotubular topography en-hances the bioactivity of titanium implants, Nanomedicine, 13(6), 2017, 1913–1923.
  • 17. Jackson M.J., Kopac J., Balazic M., Bombac D., Brojan M. and Kosel F. Titanium and Titanium Alloy Applications in Medicine. Surgical tools and medical devices, 2nd edition, eds.: Waqar Aahmed, Mark J. Jackson. Springer International Publishing, Switzerland 2016, 475–518.
  • 18. Kosaka Y., Faller K. and Fox S. P. Newly developed titanium alloy sheets for the exhaust systems of motorcycles and automobiles. JOM: the Journal of the Minerals, Metals & Materials Society 5(11), 2004, 32–34.
  • 19. Kosaka Y., Fox S. P. and Faller K., Reichmann S.H. Development of low cost titanium alloy sheet for automotive exhaust applications. Proceedings of the Minerals, Metals & Materials Society Symposium, 2004, 67–76.
  • 20. Marciniak J.: Biomaterials (in Polish: Biomateriały). Silesian University of Technology Publishing House, Gliwice, Poland, 2002.
  • 21. Muzykiewicz W. Rękas A., Major R., Major B. and Kustosz R. Forming of prts of artificial cardiac chambers made of titanium sheet (in Polish: Tłoczenie elementów komory sztucznego serca z blachy tytanowej. Ores and metals (in Polish: Rudy i Metale) 51(4), 2006, 212–218.
  • 22. Nakamura S. and Homma K. Durability of Titanium-Clad Steel Plates used as an Anti-Corrosion System, Structural Engineering International 10(4), 2000, 262–265.
  • 23. Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A243, 1998, 231–236.
  • 24. Niinomi M., Liu Y., Nakai M., Liu H. and Li H. Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regennerative Biomaterials 3(3), 2016, 173–185.
  • 25. Odenberger E.-L., Oldenburg M., Thilderkvist P., Stoehr T., Lechler J. and Merklein M.: Tool devel-opment based on modelling and simulation of hot sheet metal forming of Ti–6Al–4V titanium alloy. Journal of Materials Processing Technology 211, 2011, 1324–1335.
  • 26. PamStamp 2G v. 2011. User’s Guide, 2011.
  • 27. Rey C. Orthopedic biomaterials, bioactivity, biodegradation; a physical-chemical approach. Journal of Biomechanics 31(Supl.1), 1998, 182–182.
  • 28. Su H., Luo X-B., Chai F., Shen J-C., Sun X-J. and Lu F. Manufacturing technology and application trends of titanium clad steel plates. Journal of Iron and Steel Research, International 22(11), 2015, 977–982.
  • 29. Wierzchoń T., Czarnowska E. and Krupa D. Surface engineering in production of titanium biomaterials (in Polish: Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych). Warsaw University of Technology Publishing House, Warsaw, Poland, 2004.
  • 30. Zhoua Y.G., Zeng W.D. and Yu H.Q. An investigation of a new near-beta forging process for titanium alloys and its application in aviation components. Materials Science and Engineering A 393, 2005, 204–212.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea2ad912-b8f8-4f91-9da9-cc990ba722b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.