PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of Homogenization Methods in Prediction of Strength Properties for WPC Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to reduce costs of experimental research, new methods of forecasting material properties are being developed. The current intensive increase in computing power motivates to develop the computer simulations for material properties prediction. This is due to the possibility of using analytical and numerical methods of homogenization. In this work calculations for predicting the properties of WPC composites using analytical homogenization methods, i.e. Mori-Tanaka (first and second order) models, Nemat-Nasser and Hori models and numerical homogenization methods were performed.
Rocznik
Strony
77--89
Opis fizyczny
Bibliogr. 21 poz., fig., tab.
Twórcy
autor
  • Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Abdulle, A. (2013). Numerical homogenization methods (No. EPFL-ARTICLE-184958).
  • [2] Amirmaleki, M., Samei, J., Green, D. E., van Riemsdijk, I., & Stewart, L. (2016). 3D micro-mechanical modeling of dual phase steels using the representative volume element method. Mechanics of Materials, 101, 27–39. doi: 10.1016/j.mechmat.2016.07.011
  • [3] Bendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 71(2), 197–224. doi: 10.1016/0045-7825(88)90086-2
  • [4] Benveniste, Y. (1987). A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of materials, 6(2), 147–157. doi: 10.1016/0167-6636(87)90005-6
  • [5] Bouchart, V., Brieu, M., Kondo, D., & Abdelaziz, M. N. (2007). Macroscopic behavior of a reinforced elastomer: micromechanical modelling and validation. Mechanics & Industry, 8(3), 199–205. doi: 10.1051/meca:2007039
  • [6] Doghri, I., & Tinel, L. (2006). Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation. Computer methods in applied mechanics and engineering, 195(13), 1387–1406. doi: 10.1016/j.cma.2005.05.041
  • [7] Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (241(1226), pp. 376–396). The Royal Society. doi: 10.1098/rspa.1957.0133
  • [8] e-Xstream engineering (2016). DIGIMAT – User’s manual. MSC Software Belgium SA, Mont-Saint-Guibert.
  • [9] Frącz, W., & Janowski, G. (2016). Strength analysis of molded pieces produced from wood-polymer composites (WPC) including their complex structures. Composites Theory and Practice, 16(4), 260–265.
  • [10] Lagoudas, D. C., Gavazzi, A. C., & Nigam, H. (1991). Elastoplastic behavior of metal matrix composites based on incremental plasticity and the Mori-Tanaka averaging scheme. Computational Mechanics, 8(3), 193–203. doi: 10.1007/BF00372689
  • [11] Lielens, G. (1999). Micro-macro modeling of structured materials (PhD thesis). Universite Catholique de Louvain, Louvain-la-Neuve, Belgium.
  • [12] Maxwell, J. C. (1867). On the dynamical theory of gases. Philosophical transactions of the Royal Society of London, 157, 49–88. doi: 10.1098/rstl.1867.0004
  • [13] Maxwell, J. C. (1873), A treatise on electricity and magnetism. 3rd Ed. Oxford: Clarendon Press.
  • [14] Mercier, S., & Molinari, A. (2009). Homogenization of elastic–viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. International Journal of Plasticity, 25(6), 1024–1048. doi: 10.1016/j.ijplas.2008.08.006
  • [15] Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571–574. doi: 10.1016/0001-6160(73)90064-3
  • [16] Nemat-Nasser, S., & Hori, M. (1993). Micromechanics: overall properties of heterogeneous solids, Amsterdam: Elsevier Science.
  • [17] Pierard, O., LLorca, J., Segurado, J., & Doghri, I. (2007). Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization. International Journal of Plasticity, 23(6), 1041–1060. doi: 10.1016/j.ijplas.2006.09.003
  • [18] Rayleigh, L. (1892). LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(211), 481–502. doi: 10.1080/14786449208620364
  • [19] Soni, G., Singh, R., Mitra, M., & Falzon, B. G. (2014). Modelling matrix damage and fibre-matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M 2 RVE). International Journal of Solids and Structures, 51(2), 449–461. doi: 10.1016/j.ijsolstr.2013.10.018
  • [20] Trzepieciński, T., Ryzińska, G., Biglar, M., & Gromada, M. (2017). Modelling of multilayer actuator layers by homogenisation technique using Digimat software. Ceramics International, 43(3), 3259-3266. doi: 10.1016/j.ceramint.2016.11.157
  • [21] Voigt, W. (1889). Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der physik, 274(12), 573–587. doi: 10.1002/andp.18892741206
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea181377-2a5a-4bc3-afb9-58c640133d2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.