PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation into the effect of waste engine oil and vegetable oil recycling agents on the performance of laboratory-aged bitumen

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie wpływu recyklingowych dodatków z odpadowego oleju silnikowego i oleju roślinnego na właściwości starzonego w laboratorium bitumu
Języki publikacji
EN
Abstrakty
EN
The pavement recycling method is one of the practical ways to integrate sustainable development into transportation infrastructure, and it has been adopted worldwide. The use of reclaimed asphalt pavement (RAP) in new asphalt highways is limited due to the ageing effects caused by UV damage and weathering on the asphalt binder. To address this issue, waste vegetable oil (WVO) and waste engine oil (WEO) have been proposed as potential rejuvenating agents to enhance the recyclability of pavements containing RAP. This study evaluated the effectiveness of WEO and WVO as chemical rejuvenating agents through various tests on both aged and virgin asphalt binders. The tests included measurements of ductility, fire, and flash points, softening points, and penetration. The results indicate that the addition of WEO and WVO can improve the low-temperature properties of asphalt binders when mixed with RAP, resulting in reduced stiffness. The mixture containing WEO and WVO exhibited improved stability compared to the control, suggesting enhanced flow with increasing waste oil content in comparison to aged binder, albeit with slightly reduced flow compared to the virgin binder. This study demonstrates the potential of WEO and WVO as recycling agents to enhance the performance of bituminous mixes incorporating RAP.
PL
Metoda recyklingu nawierzchni drogowych jest jednym z praktycznych sposobów wdrażania zrównoważonego rozwoju w infrastrukturę transportową i została przyjęta na całym świecie. Użycie odzyskanego asfaltu drogowego (RAP) w nowych autostradach asfaltowych jest ograniczone z powodu efektów starzenia spowodowanych uszkodzeniami UV i wpływem warunków atmosferycznych na spoiwo asfaltowe. Aby rozwiązać ten problem, zaproponowano wykorzystanie odpadowego oleju roślinnego (WVO) oraz odpadowego oleju silnikowego (WEO) jako potencjalnych środków odmładzających, mających na celu zwiększenie możliwości recyklingu nawierzchni zawierających RAP. Niniejsze badanie oceniło skuteczność WEO i WVO jako chemicznych środków odmładzających poprzez różne testy na starzonych i świeżych spoiwach asfaltowych. Testy obejmowały pomiary plastyczności, punktów zapłonu, miękkości oraz penetracji. Wyniki wskazują, że dodatek WEO i WVO może poprawić właściwości asfaltu przy niskich temperaturach, gdy jest mieszany z RAP, co skutkuje zmniejszeniem sztywności. Mieszanka zawierająca WEO i WVO wykazała lepszą stabilność w porównaniu do kontrolnej mieszanki, wskazując na lepszy przepływ przy wzroście zawartości odpadowego oleju w porównaniu do starzonego spoiwa, choć z nieco gorszym przepływem w porównaniu do spoiwa świeżego. Badanie to demonstruje potencjał WEO i WVO jako środków recyklingowych do poprawy wydajności mieszanki bitumicznej zawierającej RAP.
Rocznik
Strony
33--54
Opis fizyczny
Bibliogr. 59 poz., fig., tab.
Twórcy
autor
  • International Education School; Chang’an University, China
autor
  • School of Highway; Chang’an University, China
autor
  • Doctoral School; Silesian University of Technology, Poland
  • School of Civil Engineering; University Sains Malaysia (Engineering Campus), Malaysia
  • Graduate Research Assistant; Department of Civil Engineering; University of Louisiana at Lafayette, United States
Bibliografia
  • 1. Dedene C. D. and You Z., "The performance of aged asphalt materials rejuvenated with waste engine oil”, International Journal of Pavement Research and Technology, vol.7 , no. 2, (1997), pp. 145–152. https://10.6135/ijprt.org.tw/2014.7(2).145 Google Scholar
  • 2. Mangiafico S., Sauzéat C., Di Benedetto H., Pouget S., and Olard F., "Influence of a recycling agent of vegetable origin on complex modulus and fatigue performances of bituminous mixtures produced with Reclaimed Asphalt Pavement, in 3rd International Symposium on Asphalt Pavements & Environment" vol. 629, (2015), pp. 1–14. https://10.1080/14680629.2016.1213509 Google Scholar
  • 3. Zhu H., Xu G., Gong M., and Yang J., "Recycling long-term-aged asphalts using biobinder/plasticizer-based rejuvenator”, Construction and Building Materials, vol. 147, (2017), pp. 117–129. https://10.1016/J.CONBUILDMAT.2017.04.066 DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.066 Google Scholar
  • 4. Zhang R., Wang H., You Z., Jiang X., and Yang X., "Optimization of bio-asphalt using bio-oil and distilled water”, Journal of Cleaner Production, vol. 165, (2017), pp. 281–289. https://10.1016/J.JCLEPRO.2017.07.154 DOI: https://doi.org/10.1016/j.jclepro.2017.07.154 Google Scholar
  • 5. Qurashi I. A. and Swamy A. K., "Viscoelastic properties of recycled asphalt binder containing waste engine oil”, Journal of Cleaner Production, vol. 182, (2018), pp. 992–1000. https://10.1016/J.JCLEPRO.2018.01.237 DOI: https://doi.org/10.1016/j.jclepro.2018.01.237 Google Scholar
  • 6. Raman N. A. A., Hainin M. R., Hassan N. A., and Ani F. N., "A review on the application of bio-oil as an additive for asphalt”, Jurnal Teknologi-Sciences & Engineering, vol. 72, (2015), pp. 105–110. https://doi.org/10.11113/jt.v72.3948 DOI: https://doi.org/10.11113/jt.v72.3948 Google Scholar
  • 7. Sun D., Lu T., Xiao F., Zhu X., and Sun G., "Formulation and aging resistance of modified bioasphalt containing high percentage of waste cooking oil residues”, Journal of Cleaner Production, vol. 161, (2017), pp. 1203-1214. https://10.1016/j.jclepro.2017.06.155 DOI: https://doi.org/10.1016/j.jclepro.2017.06.155 Google Scholar
  • 8. Moon K. H., Cannone Falchetto A., Wang D., Wistuba M. P., and Tebaldi G., "Low temperature performance of recycled asphalt mixtures under static and oscillatory loading”, Road Materials and Pavement Design, vol. 18, (2017), pp. 297–314. https://10.1080/14680629.2016.1213500 DOI: https://doi.org/10.1080/14680629.2016.1213500 Google Scholar
  • 9. Nosetti A., Pérez-Madrigal D., Pérez-Jiménez F., and Martínez A. H., "Effect of the recycling process and binder type on bituminous mixtures with 100% reclaimed asphalt pavement”, Construction and Building Materials, vol. 167, (2018), pp. 440–448. https://doi.org/10.1016/j.conbuildmat.2018.02.042 DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.042 Google Scholar
  • 10. Singh D., Ashish P. K., and Chitragar S. F., "Laboratory performance of recycled asphalt mixes containing wax and chemical based warm mix additives using semi circular bending and tensile strength ratio tests”, Construction and Building Materials, vol. 158, (2018), pp. 1003–1014. https://doi.org/10.1016/j.conbuildmat.2017.10.080 DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.080 Google Scholar
  • 11. Ding Y. J., Huang B. S., and Shu X., "Blending efficiency evaluation of plant asphalt mixtures using fluorescence microscopy”, Construction and Building Materials, vol. 161, (2018), pp. 461–467. https://doi.org/10.1016/J.CONBUILDMAT.2017.11.138 DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.138 Google Scholar
  • 12. El-Shorbagy A. M., El-Badawy S. M., and Gabr A. R., "Investigation of waste oils as rejuvenators of aged bitumen for sustainable pavement”, Construction and Building Materials, vol. 220, (2019), pp. 228–237. https://doi.org/10.1016/j.conbuildmat.2019.05.180 DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.180 Google Scholar
  • 13. Rafiq W., Napiah M., Habib N. Z., Sutanto M. H., Alaloul W. S., Khan M. I., Musarat M. A., and Memon A. M., "Modeling and design optimization of reclaimed asphalt pavement containing crude palm oil using response surface methodology”, Construction and Building Materials, vol. 291, (2020), 123288. https://doi.org/10.1016/j.conbuildmat.2021.123288 DOI: https://doi.org/10.1016/j.conbuildmat.2021.123288 Google Scholar
  • 14. Ma H., Mao Q., and Li N., "Influence factors of RAP content in plant-mixed hot recycling asphalt pavement”, Journal of Chongqing University of Technology (Natural Science), vol. 39, (2020), pp. 97–104. https://doi.org/10.3969/j.issn.1674-0696.2020.09.14 Google Scholar
  • 15. Shen J., Amirkhanian S., and Tang B., "Effects of rejuvenator on performance-based properties of rejuvenated asphalt binder and mixtures”, Construction and Building Materials, vol. 21, (2007), pp. 958–964. https://10.1016/j.conbuildmat.2006.03.006 Google Scholar
  • 16. Cavalli M. C., Zaumanis M., Mazza E., Partl M. N., and Poulikakos L. D., "Aging effect on rheology and cracking behaviour of reclaimed binder with bio-based rejuvenators”, Journal of Cleaner Production, vol. 189, (2018), pp. 88–97. https://10.1016/j.jclepro.2018.03.305 DOI: https://doi.org/10.1016/j.jclepro.2018.03.305 Google Scholar
  • 17. Tang W., Yu X., Li N., Dong F., Wang Z., and Zhang Y., "Effect of rejuvenators on the workability and performances of reclaimed asphalt mixtures”, Materials, vol. 14, (2021), 6385. https://10.3390/ma14216385 DOI: https://doi.org/10.3390/ma14216385 Google Scholar
  • 18. Zaumanis M., Mallick R. B., and Frank R., "Determining optimum rejuvenator dose for asphalt recycling based on Superpave performance grade specifications”, Construction and Building Materials, vol. 69, (2014), pp. 159–166. https://doi.org/10.1016/j.conbuildmat.2014.07.035 DOI: https://doi.org/10.1016/j.conbuildmat.2014.07.035 Google Scholar
  • 19. Singh-Ackbarali D. et al., "Potential of used frying oil in paving material: solution to environmental pollution problem”, Environmental Science and Pollution Research, vol. 24, (2017), pp. 12220–12226. https://doi.org/10.1007/s11356-017-8793-z DOI: https://doi.org/10.1007/s11356-017-8793-z Google Scholar
  • 20. Kamaruddin M. et al., "Evaluation of pavement mixture incorporating waste oil", Journal Teknologi, vol. 71, (2014), pp. 93–98. https://doi.org/10.11113/jt.v71.3766 DOI: https://doi.org/10.11113/jt.v71.3766 Google Scholar
  • 21. Villanueva A., Susanna H., and Zanzotto L., "Asphalt modification with used lubricating oil", Canadian Journal of Civil Engineering, vol. 35, (2008), pp. 148–157. https://doi.org/10.1139/L07-092 DOI: https://doi.org/10.1139/L07-092 Google Scholar
  • 22. Borhan M. N. et al., "The effects of used cylinder oil on asphalt mixes", European Journal of Scientific Research, vol. 28, (2009), pp. 398–411, 136336620. Google Scholar
  • 23. Soleimani A., Walsh S., and Hesp S., "Asphalt cement loss tangent as surrogate performance indicator for control of thermal cracking", Transportation Research Record, vol. 2162, (2009), pp. 39–46. https://doi.org/10.3141/2126-05 DOI: https://doi.org/10.3141/2126-05 Google Scholar
  • 24. Hayner R. E., Process for paving asphalt containing mineral lubricating oil base stock, U.S. Patent No. 5911817, (1999). Google Scholar
  • 25. Collins J. H. and Jones G. R., Asphalt composition and method, U.S. Patent No. 6074469, (2000). Google Scholar
  • 26. Shen J., Amirkhanian S., and Tang B., "Effects of rejuvenator on performance-based properties of rejuvenated asphalt binder and mixtures", Construction and Building Materials, vol. 21, (2007), pp. 958–964. https://doi.org/10.1016/j.conbuildmat.2006.03.006 DOI: https://doi.org/10.1016/j.conbuildmat.2006.03.006 Google Scholar
  • 27. Dai Lu X. and Saleh M., "Evaluation of warm mix asphalt performance incorporating high RAP content", Canadian Journal of Civil Engineering, vol. 43, 2016, pp. 343–350. https://doi.org/10.1139/cjce-2015-0454 DOI: https://doi.org/10.1139/cjce-2015-0454 Google Scholar
  • 28. Li H. et al., "Study on waste engine oil and waste cooking oil on performance improvement of aged asphalt and application in reclaimed asphalt mixture", Construction and Building Materials, vol. 276, (2021). https://doi.org/10.1016/j.conbuildmat.2020.122138 DOI: https://doi.org/10.1016/j.conbuildmat.2020.122138 Google Scholar
  • 29. Ali A. W. et al., "Investigation of the impacts of aging and RAP percentages on effectiveness of asphalt binder rejuvenators", Construction and Building Materials, vol. 110, (2016), pp. 211–217. https://doi.org/10.1016/j.conbuildmat.2016.02.013 DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.013 Google Scholar
  • 30. Elkashef M. et al., "Introducing a soybean oil-derived material as a potential rejuvenator of asphalt through rheology, mix characterisation and Fourier Transform Infrared analysis", Road Materials and Pavement Design, vol. 19, (2017), pp. 1750-1770. https://doi.org/10.1080/14680629.2017.1345781 DOI: https://doi.org/10.1080/14680629.2017.1345781 Google Scholar
  • 31. Li J. et al., "New additive for use in hot in-place recycling to improve performance of reclaimed asphalt pavement mix", Transportation Research Record: Journal of the Transportation Research Board, vol. 2445, (2014), pp. 39–46. https://doi.org/10.3141/2445-05 DOI: https://doi.org/10.3141/2445-05 Google Scholar
  • 32. Khan D., "Effects of crumb rubber and styrene-butadiene rubber additives on the properties of asphalt binder and the Marshall performance properties of asphalt mixtures", Budownictwo i Architektura, vol. 22, no. 4, (2023), pp. 147–161. https://10.35784/bud-arch.5499 DOI: https://doi.org/10.35784/bud-arch.5499 Google Scholar
  • 33. Ali B., Li P., Khan D. and Haq I. U., "Evaluation of the properties of hot mixed asphalt modified by plastic waste", Quaid-E-Awam University Research Journal of Engineering, Science & Technology, Nawabshah., vol. 19, no. 2, (2021), pp. 106-113. https://doi.org/10.52584/QRJ.1902.16 DOI: https://doi.org/10.52584/QRJ.1902.16 Google Scholar
  • 34. Hassan T., Ahmad N., Khan D., Mohd Hasan M. R., Aman A. and Farooq U., "Performance evaluation of asphalt binder modified with shear thickening fluid", Journal of Materials in Civil Engineering, vol. 35, (2023), pp. 1-12. https://doi.org/10.1061/jmcee7.mteng-15322 DOI: https://doi.org/10.1061/JMCEE7.MTENG-15322 Google Scholar
  • 35. Mogawer W. S. et al., "Using Polymer Modification and Rejuvenators to Improve the Performance of High Reclaimed Asphalt Pavement Mixtures", Transportation Research Record: Journal of the Transportation Research Board, vol. 2575, (2016), pp. 10–18. https://doi.org/10.3141/2575-02 DOI: https://doi.org/10.3141/2575-02 Google Scholar
  • 36. Yin F. et al., "Characterising the long-term rejuvenating effectiveness of recycling agents on asphalt blends and mixtures with high RAP and RAS contents", Road Materials and Pavement Design, vol. 18, (2017), pp. 273-292. https://doi.org/10.1080/14680629.2017.1389074 DOI: https://doi.org/10.1080/14680629.2017.1389074 Google Scholar
  • 37. Im S. et al., "Impacts of rejuvenators on performance and engineering properties of asphalt mixtures containing recycled materials", Construction and Building Materials, vol. 53, (2014), pp. 596-603. https://doi.org/10.1016/j.conbuildmat.2013.12.025 DOI: https://doi.org/10.1016/j.conbuildmat.2013.12.025 Google Scholar
  • 38. American Association of State Highway and Transportation Officials, "Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates", AASHTO T 27 (2020) Edition, 2020. Google Scholar
  • 39. Khan N, Karim F, Latif Qureshi Q. B. A. I., Mufti S. A., Rabbani M. B. A., Khan M. S., Khan D., "Effect of fine aggregates and mineral fillers on the permanent deformation of hot mix asphalt", Sustainability; vol. 15, no. 13, (2023), 10646. https://doi.org/10.3390/su151310646 DOI: https://doi.org/10.3390/su151310646 Google Scholar
  • 40. Kamran M., Khan M., Khan D., Hasan M., Khan N., and Ullah M., "Experimental evaluation of hot mix asphalt using coal bottom ash as partial filler replacement", Roads and Bridges - Drogi i Mosty, vol. 22, no .2, (2023), pp. 167-179. http://dx.doi.org/10.7409/rabdim.023.008 Google Scholar
  • 41. Khan D., "Effect of recycled aggregates and polymer modified bitumen on the Marshall properties of hot mix asphalt - a case study", Quaid-e-Awam Univ. Res. J. Eng. Sci. Technol., vol. 21, no. 1, pp. 16–26, 2023, https://doi.org/10.52584/qrj.2101.03 DOI: https://doi.org/10.52584/QRJ.2101.03 Google Scholar
  • 42. Khan D., Khan R., Khan T., Alam M., "Performance of hot mix asphalt using polymers modified bitumen and marble dust as a filler", Journal of Traffic and Transportation Engineering (English Edition), vol. 10, no. 3, (2023), pp. 385-398. https://doi.org/10.1016/j.jtte.2022.12.002 DOI: https://doi.org/10.1016/j.jtte.2022.12.002 Google Scholar
  • 43. Asphalt Institute Manual Series No. 4 (MS-4), Mix design methods for asphalt concrete and other hot-mix types, (1991). Google Scholar
  • 44. American Association of State Highway and Transportation Officials, Accelerated aging of asphalt binder using a pressurized aging vessel (PAV), Designation R 28. AASHTO, Washington DC, USA, (2009). Google Scholar
  • 45. ASTM D 7175 - 08 Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. 2008 Annual Book of ASTM Standards. West Conshohocken, PA: ASTM International, (2008). Google Scholar
  • 46. Cong P., Chen S., Yu J., Wu S., "Effects of aging on the properties of modified asphalt binder with flame retardants", Construction and Building Materials, vol. 24, (2010), pp. 2554-2558. https://10.1016/j.conbuildmat.2010.05.022 DOI: https://doi.org/10.1016/j.conbuildmat.2010.05.022 Google Scholar
  • 47. Adesina P. A., Dahunsi B. I., "Blended waste utilization in road construction: Physical characteristics of bitumen modified with waste cooking oil and high-density polyethylene", International Journal of Pavement Research and Technology, vol. 14, (2021), pp. 98-104. https://10.1007/s42947-020-0040-1 DOI: https://doi.org/10.1007/s42947-020-0040-1 Google Scholar
  • 48. Zapién-Castillo S., Rivera-Armenta J. L., Chávez-Cinco M. Y., Salazar-Cruz B. A., and Mendoza-Martínez A. M., "Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite", Construction and Building Materials, vol. 106, (2016), pp. 349-356. https://doi.org/10.1016/j.conbuildmat.2015.12.099 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.099 Google Scholar
  • 49. Ehinola O. A., Falode O. A., and Jonathan G., "Softening point and Penetration Index of Asphalt binder from parts of Southwestern Nigeria”, Nafta, vol.63, (2012), pp.319-323. Google Scholar
  • 50. Enieb M. and Diab A., "Characteristics of asphalt binder and mixture containing nanosilica", International Journal of Pavement Research and Technology, vol. 10, (2017), pp. 148-157. https://doi.org/10.1016/j.ijprt.2016.11.009 DOI: https://doi.org/10.1016/j.ijprt.2016.11.009 Google Scholar
  • 51. Bilema M. A. M., Aman M. Y., and Ahmad K. A., "Investigating the rheological and physical properties for unaged of crumb rubber-modified binders containing warm mix asphalt additive", Global Civil Engineering Conference, Springer, vol. 9, (2018), pp. 1389-1400. https://doi.org/10.1007/978-981-10-8016-6_100 DOI: https://doi.org/10.1007/978-981-10-8016-6_100 Google Scholar
  • 52. Heneash U., Effect of the repeated recycling on hot mix asphalt properties, Doctoral Dissertation, University of Nottingham, (2013). http://etheses.nottingham.ac.uk/3283/ Google Scholar
  • 53. Zhang D., Chen M., Wu S., Liu J., Amirkhanian S., "Analysis of the relationships between waste cooking oil qualities and rejuvenated asphalt properties", Materials, vol. 10, no. 5, (2017), pp. 508. https://doi.org/10.3390/ma10050508 DOI: https://doi.org/10.3390/ma10050508 Google Scholar
  • 54. Hofko B. et al., "Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders", Materials and Structures, vol. 50, no. 1, (2017), pp. 1–15. https://doi.org/10.1617/s11527-017-1059-x DOI: https://doi.org/10.1617/s11527-017-1059-x Google Scholar
  • 55. Hussein A. A. et al., "Performance of nanoceramic powder on the chemical and physical properties of bitumen", Construction and Building Materials, vol. 156, (2017), pp. 496–505. https://doi.org/10.1016/j.conbuildmat.2017.09.014 DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.014 Google Scholar
  • 56. Loise V. et al., "Additives on aged bitumens: What probe to distinguish between rejuvenating and fluxing effects?" Journal of Molecular Liquids, vol. 339, (2021), 116742. https://doi.org/10.1016/j.molliq.2021.116742 DOI: https://doi.org/10.1016/j.molliq.2021.116742 Google Scholar
  • 57. Ali S. I. A. et al., "Performance evaluation of Al2O3 nanoparticle modified asphalt binder", Road Materials and Pavement Design, vol. 18, (2017), pp. 1251–1268. https://doi.org/10.1080/14680629.2016.1208621 DOI: https://doi.org/10.1080/14680629.2016.1208621 Google Scholar
  • 58. Leiva-Villacorta F. and Vargas-Nordcbeck A., "Optimum content of nano-silica to ensure proper performance of an asphalt binder", Road Materials and Pavement Design, vol. 20, (2019), pp. 414–425. https://doi.org/10.1080/14680629.2017.1385510 DOI: https://doi.org/10.1080/14680629.2017.1385510 Google Scholar
  • 59. Yao H. et al., "Rheological properties and chemical bonding of asphalt modified with nanosilica", Journal of Materials in Civil Engineering, vol. 25, no. 11, (2013), pp. 1619–1630. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690 Google Scholar
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea176b3f-8d03-4740-8662-7b5aa2f0fe4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.