PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using artificial neural networks to predict the reference evapotranspiration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Artificial neural network models (ANNs) were used in this study to predict reference evapotranspiration (ETo) using climatic data from the meteorological station at the test station in Kafr El-Sheikh Governorate as inputs and reference evaporation values computed using the Penman-Monteith (PM) equation. These datasets were used to train and test seven different ANN models that included different combinations of the five diurnal meteorological variables used in this study, namely, maximum and minimum air temperature (Tmax and Tmin ), dew point temperature (Tdw), wind speed (u), and precipitation (P), how well artificial neural networks could predict ETo values. A feed-forward multi-layer artificial neural network was used as the optimization algorithm. Using the tansig transfer function, the final architected has a 6-5-1 structure with 6 neurons in the input layer, 5 neurons in the hidden layer, and 1 neuron in the output layer that corresponds to the reference evapotranspiration. The root mean square error (RMSE) of 0.1295 mm∙day -1 and the correlation coefficient (r) of 0.996 are estimated by artificial neural network ETo models. When fewer inputs are used, ETo values are affected. When three separate variables were employed, the RMSE test values were 0.379 and 0.411 mm∙day -1 and r values of 0.971 and 0.966, respectively, and when two input variables were used, the RMSE test was 0.595 mm∙day -1 and the r of 0.927. The study found that including the time indicator as an input to all groups increases the prediction of ETo values significantly, and that including the rain factor has no effect on network performance. Then, using the Penman-Monteith method to estimate the missing variables by using the ETo calculator the normalised root mean squared error (NRMSE) reached about 30% to predict ETo if all data except temperature is calculated, while the NRMSE reached about of 13.6% when used ANN to predict ETo using variables of temperature only.
Wydawca
Rocznik
Tom
Strony
1--8
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Agricultural Engineering Research Institute (AEnRI), Agricultural Research Centre (ARC) Nadi El-Said St. Dokki, P.O. Box 256, Giza, Egypt
  • Ain Shams University, Faculty of Agriculture, Department of Agricultural Engineering, Cairo, Egypt
  • Agricultural Engineering Research Institute (AEnRI), Agricultural Research Centre (ARC) Nadi El-Said St. Dokki, P.O. Box 256, Giza, Egypt
Bibliografia
  • Abbas, M. (2017) “Forecasting of monthly evaporation in Hama using artificial neural network,” Tishreen University Journal for Research and Scientific Studies – Engineering Sciences Series, 39(3), pp. 94-107. [In Arabian].
  • Ali, H. and Shui, L.T. (2009) “Potential evapotranspiration model for Muda Irrigation Project, Malaysia,” Water Resources Management, 23(1), pp. 57–69. Available at: https://doi.org/10.1007/s11269-008-9264-6.
  • Allen, R.G. et al. (1998) “Crop evapotranspiration – Guidelines for computing crop water requirements,” FAO Irrigation and Drainage Paper, 56. Rome: FAO.
  • Alsumaiei, A.A. (2020) “Utility of artificial neural networks in modeling pan evaporation in hyper-arid climates,” Water, 12(5), 1508. Available at: https://doi.org/10.3390/w12051508.
  • Alves, W.J.B., De Souza Rolim, G. and De Oliveira Aparecido, L.E. (2017) “Reference evapotranspiration forecasting by artificial neural networks,” Engenharia Agricola, 37(6), pp. 1116–1125. Available at: https://doi.org/10.1590/1809-4430-eng.agric.v37n6p1116-1125/2017.
  • Antonopoulos, V.Z. and Antonopoulos, A. (2017) “Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables,” Computers and Electronics in Agriculture, 132, pp. 86–96. Available at: https://doi.org/10.1016/j.compag.2016.11.011.
  • Awchi, T.A. (2008) “Application of radial basis function neural networks for reference evapotranspiration prediction,” AL Rafdain Engineering Journal, 16(1), pp. 117–130. Available at: http://dx.doi.org/10.33899/rengj.2008.44029.
  • Banihabib, M.E., Valipour, M. and Behbahani, S.M.R. (2012) “Comparison of autoregressive static and artificial dynamic neural network for the forecasting of monthly inflow of Dez reservoir,” Journal of Environmental Science and Technology, 13(4), pp. 1–14.
  • Bouhlasa, S. and Pare, S. (2006) “Evapotranspiration de référence dans la region aride de Tafilalet au sud-est du Maroc [Reference evapotranspiration in the arid area of Tafilalet, south-east of Morocco],” African Journal of Environmental Assessment and Management, 11, pp. 1–16.
  • Coulibaly, P., Anctil, F. and Bobée, B. (2000) “Daily reservoir inflow forecasting using artificial neural networks with stopped training approach,” Journal of Hydrology, 230(3–4), pp. 244–257. Available at: https://doi.org/10.1016/s0022-1694(00)00214-6.
  • Córdova, M. et al. (2015) “Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data,” Mountain Research and Development, 35(3), pp. 230–239. Available at: https://doi.org/10.1659/mrd-journal-d-14-0024.1.
  • Dehbozorgi, F.J. and Sepaskhah, A.R. (2012) “Comparison of artificial neural networks and prediction models for reference evapotranspiration estimation in a semi-arid region,” Archives of Agronomy and Soil Science, 58(5), pp. 477–497. Available at: https://doi.org/10.1080/03650340.2010.530255.
  • Diamantopoulou, M.J., Georgiou, P. and Papamichail, D. (2011) “Performance evaluation of artificial neural networks in estimating reference evapotranspiration with minimal meteorological data,” Global Nest Journal, 13(1), pp. 18–27. Available at: https://doi.org/10.30955/gnj.000758.
  • FAO (2009) “ETo calculator – Evapotranspiration from a reference surface,” Land and Water Digital Media Series No 36 [CD-Rom]. Rome: Food and Agriculture Organization of the United Nations.
  • Heddam, S. (2014) “Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: a case study of Klamath River at Miller Island Boat Ramp, OR, USA,” Environmental Science and Pollution Research, 21(15), pp. 9212–9227. Available at: https://doi.org/10.1007/s11356-014-2842-7.
  • Kisi, O. (2008) “The potential of different ANN techniques in evapotranspiration modelling,” Hydrological Processes, 22(14), pp. 2449–2460. Available at: https://doi.org/10.1002/hyp.6837.
  • Kumar, M. et al. (2002) “Estimating Evapotranspiration using Artificial Neural Network,” Journal of Irrigation and Drainage Engineering, 128(4), pp. 224–233. Available at: https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(224).
  • Nash, J.E. and Sutcliffe, J.V. (1970) “River flow forecasting through conceptual models part I – A discussion of principles,” Journal of Hydrology, 10(3), pp. 282–290. Available at: https://doi.org/10.1016/0022-1694(70)90255-6.
  • Rosenberry, D.O. et al. (2007) “Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA,” Journal of Hydrology, 340(3–4), pp. 149–166. Available at: https://doi.org/10.1016/j.jhydrol.2007.03.018.
  • Sudheer, K.P., Gosain, A.K. and Ramasastri K.S. (2003) “Estimating actual evapotranspiration from limited climatic data using neural computing technique,” Journal of Irrigation and Drainage Engineering, 129(3), pp. 214–218. Available at: https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(214).
  • Trajkovic, S. (2005) “Temperature-based approaches for estimating reference evapotranspiration,” Journal of Irrigation and Drainage Engineering, 131(4), pp. 316–323. Available at: https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316).
  • Trajkovic, S., Todorovic, B. and Stankovic, M.S. (2003) “Forecasting of reference evapotranspiration by artificial neural networks,” Journal of Irrigation and Drainage Engineering, 129(6), pp. 454–457. Available at: https://doi.org/10.1061/(ASCE)0733-9437(2003)129:6(454)
  • Valipour, M. (2014) “Pressure on renewable water resources by irrigation to 2060,” Acta Advances in Agricultural Sciences, 2(8), pp. 32–42.
  • Wang, X. et al. (2012) “Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone,” Stochastic Environmental Research and Risk Assessment, 26(3), pp. 405–418. Available at: https://doi.org/10.1007/s00477-011-0535-z.
  • Willmott, C.J. (1984) “On the evaluation of model performance in physical geography,” in G.E. Gaile and C.J. Willmott (eds.) Spatial statistics and models. Theory and Decision Library, 40. Dordrecht: Springer, pp. 443–460. Available at: https://doi.org/10.1007/978-94-017-3048-8_23.
  • Wu, W., Dandy, G.C. and Maier, H.R. (2014) “Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling,” Environmental Modelling and Software, 54, pp. 108–127. Available at: https://doi.org/10.1016/j.envsoft.2013.12.016.
  • Yamina, A., Marouf, N. and Amireche, M. (2020) “The assessment of artificial neural network rainfall-runoff models under different input meteorological parameters. Case study: Seybouse basin, Northeast Algeria,” Journal of Water and Land Development, 50, pp. 38–47. Available at: https://doi.org/10.24425/jwld.2021.138158.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea11f373-3950-42dd-95e9-cacff678dd0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.