PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on temperature field characteristics of CRTS III prefabricated slab track in cold regions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A long-term monitoring experiment was conducted to investigate the spatial and temporal variation rule of the slab track temperature in cold regions using statistical analysis methods. The sensitivity of track temperature to meteorological factors was analyzed using the finite element method. The study found that temperature, solar radiation intensity, and full-section temperature of the track structure exhibit a reciprocal change with a daily cycle. Additionally, the temperature change of each structural layer lags with increasing depth. The measured data showed that the maximum positive and negative temperature gradient of the track slab exceeded the standard design value (90 °C/m, − 45 °C/m), suggesting that the design value of positive and negative temperature gradient in cold regions should be 95 °C/m and − 55 °C/m, respectively. Furthermore, the finite element model analysis indicated that the overall temperature of the track slab is strongly influenced by the daily average temperature, the solar radiation intensity, and the wind speed, while the temperature gradient of the track slab is strongly influenced by the daily temperature amplitude and solar radiation intensity. The maximum positive temperature gradient warning value of the track slab under extreme high-temperature weather was found to be 100 °C/m. These findings can provide valuable insights for the optimization design and temperature effect research of CRTS III prefabricated slab tracks in cold regions.
Rocznik
Strony
art. no. e152, 2024
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
  • School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
  • State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
autor
  • School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
  • State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
autor
  • School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
  • State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
autor
  • China Railway Development and Investment Group Co., Kunming 650500, People’s Republic of China
autor
  • School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
  • State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
autor
  • School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
  • State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
Bibliografia
  • 1. Du W, Ren JJ, Liu WG, Zhang KY, et al. Adhesion performance tests and analysis of interface damage for CRTS III prefabricated slab tracks. Constr Build Mater. 2023;408: 133685. https://doi.org/10.1016/j.conbuildmat.2023.
  • 2. Ren JJ, Liu WG, Lai JL, et al. Performance deterioration and structural state diagnosis of slab tracks for high-speed railways: a review. Eng Fail Anal. 2024;158(4):1–19. https://doi.org/10.1016/j.engfailanal.2024.107955.
  • 3. Du W, Ren JJ, Zhang KY, et al. Two-stage identification of inter-layer contact loss for CRTS III prefabricated slab track based on multi-index fusion. J Zhejiang Univ Sci A. 2023;24(6):497–515.https://doi.org/10.1631/jzus.A2300010.
  • 4. Liu D, Liu YF, Ren JJ, Yang RS, Liu XY. Contact loss beneath track slab caused by deteriorated cement emulsified a sphalt mortar: dynamic characteristics of vehicle-slab track system and pro-totype experiment. Math Prob Eng. 2016. https://doi.org/10.1155/2016/3073784.
  • 5. Liu XK, Li W, Xiao JL, Liu XY, Quan Y. Study of longitudinal temperature pressure of longitudinal balast less track with cracks. J Central South Univ Sci Technol. 2018;49(10):2526–32. https://doi.org/10.11817/j.issn.1672-7207.2018.10.020.
  • 6. Ye WL, Ren JJ, Zhang AA, Lu C. Automatic pixel-level crack detection with multi-scale feature fusion for slab tracks. Comput Aided Civil Infrastruct Eng. 2023. https://doi.org/10.1111/mice.12984.
  • 7. Chen Z, Xiao J, Liu X, Qin H, Yang R. Deformation behavior of slab warping for longitudinal continuous rigid slab under temperature effect. Adv Struct Eng. 2019;22(13):2823–36. https://doi.org/10.1177/1369433219852053.
  • 8. Ou ZM, Sun L. Simplified calculation method on nonlinear temperature effects of high-speed railway ballastless track slab. J China Railw Soc. 2015;37(6):79–87. https://doi.org/10.3969/j.issn.1001-8360.2015.06.012.
  • 9. Liu X, Li JL, Kang W, Liu X, Yang R. Simplified calculation of temperature in concrete slabs of balast less track and influence of extreme weather. J Southwest Jiaotong Univ. 2017;52(6):1037–45.https://doi.org/10.3969/j.issn.0258-2724.2017.06.001.
  • 10. Zeng ZP, Meng XB, Song SY, Wang JD. The influence of trackline environment on temperature field of double-block balastless track bed slab. J Railw Eng Soc. 2018;35(3):12–7. https://doi.org/10.1177/1687814018812325.
  • 11. Liu F, Zeng Z, Wu B, Zhang Z. Study on temperature field of continuous ballastless track for high-speed railway. J China Rail Soc.2016;38(12):86–93. https:// doi. org/ 10. 3969/j. issn. 1001- 8360.2016.12.013.
  • 12. Li J, Zhao P, Wan Z, Ren B. Experimental research and numerical analysis of temperature field on bi-block ballastless track. Sci Sinica Technol. 2014;44(7):729–35. https://doi.org/10.1360/N092014-00086.
  • 13. Huang Z. The prediction model of vertical temperaturę field for CRTSII slab track on bridge. J Railw Sci Eng.2017;14(5):899–906.
  • 14. Zeng Z, Huang Z, Yin H, Meng X, Wang W, Wang J. Influence of track line environment on the temperature field of a double-block ballastless track slab. Adv Mech Eng. 2018. https://doi.org/10.1177/1687814018812325.
  • 15. Zhao PR, Liu XY, Liu G. Experimental study of temperature gradient in track slab under outdoor conditions in Chengdu area. J Modern Transp. 2014;22(03):148–55.
  • 16. Liang JB, Dai GL, Tang Y, Yang LH. Study on values of temperature actions for CRTS I slab ballastless track on bridge. J China Railw Soc. 2021;43(1):122–7. https://doi.org/10.3969/j.issn.1001-8360.2021.01.015.
  • 17. Li J, Li Z, He Y, Lu H. Study on early warning of temperaturę gradient of ballastless track in summer in east China. Railw Stand Design. 2019;63(4):40–6. https://doi.org/10.13238/j.issn.1004-2954.201806220004.
  • 18. Zhao L, Zhou L, Zhang G, Wei T, Mahunon AD, Jiang L, ZhangY. Experimental study of the temperature distribution in CRTS-II ballastless tracks on a high-speed railway bridge. Appl Sci Basel.2020. https://doi.org/10.3390/app10061980.
  • 19. Wan ZB, Yang RS, Ren B, Wang C, Zhao PR. Experimental study on the impact of solar radiation intensity on the surface temperature of deck slab for CRTS I twin block balast less track.J Railw Sci Eng. 2015;12(1):1–6. https://doi.org/10.19713/j.cnki.43-1423/u.2015.01.001.
  • 20. Liu Y, Chen P, Zhao G. Study on the characteristics of early temperature field of CRTSII slab ballastless track structure. China Railw Sci. 2014;35(1):1–6. https://doi.org/10.3969/j.issn.1001-4632.2014.01.01.
  • 21. Sun ZJ. Temperature field and stress of CRTSIII slab balastless track in the initial pouring stage of self-compacting concrete. In: Southwest Jiaotong University. 2016. https://doi.org/10.27414/d.cnki.gxnju.2019.002689.
  • 22. Ren JJ, Zhang KY, Zheng J, Wei H, Zhang Y, Du W, Ye WL. Railway subgrade thermal-hydro-mechanical behavior and track irregularity under the sunny-shady slopes effect in seasonal frozen regions. J Central South Univ. 2022;29(11):3793–810. https://doi.org/10.1007/s11771-022-5189-0.
  • 23. Zhao L, Zhao S, Zhang J, Liu S. Analysis on temperature field for CRTS I Slab ballastless track in severely cold region. High Speed Railw Technol. 2021;12(1):22–5. https://doi.org/10.12098/j.issn.1674-8247.2021.01.005.
  • 24. Guo C, Lu Z, Lv F, Sui X. Research on the temperature features of CRTS II ballastless track slab in severe cold region. J Railw Eng Soc. 2016;33(9):29–34. https://doi.org/10.3969/j.issn.1006-2106.2016.09.007.
  • 25. Zhang Q, Cai X, Zhong Y, Chen Z, Wang C. Temperature field and thermal effects of the longitudinal connected slab track basedon the measurement data and thermal-fluid-structure coupling analysis. Constr Build Mater. 2022;343:1–14. https://doi.org/10.1016/j.conbuildmat.2022.128121.
  • 26. Ou Z, Sun L, Zhou J, Zhao G. Probability value of temperaturę loads for ballastless track slab of high speed railway: axial uniform thermal actions. J China Railw Soc. 2016;38(2):96–104. https://doi.org/10.3969/j.issn.1001-8360.2016.02.013.
  • 27. Ou Z, Sun L, Cheng Q. Analysis on temperature field of ballastless track structure based on meteorological data. J China Railw Soc. 2015;49(3):482–7. https://doi.org/10.3785/j.issn.1008-973X.2015.03.013.
  • 28. Zhao L, Zhao S, He R. Temperature field characteristics of slab ballastless track under extreme low temperature in northeast China. Railw Eng. 2022;62(12):46–51.
  • 29. Wang J, You R, Wang M, Jiang C. Research on the slab temperature warping of the unit slab track system. China Railw Sci.2010;31(3):9–14.
  • 30. Zhu W, Ma H, Liu H, Yang W. Online monitoring system for trackslab temperature. In: Khalil M, Batoo KM (eds) Proceedings of The 2017 International Seminar on Artificial Intelligence, Networking and Information Technology (Anit 2017), International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT), p. 37–41. https://doi.org/10.16037/j.1007-869x.2019.01.027.
  • 31. Cui X, Du B, Xiao H, Zhou R, Guo G, Liu H. Interface damage and arching mechanism of CRTS II slab track under temperaturę load. Constr Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2021.123258.
  • 32. Liu H, Lu H, He Y, Li Z. Experimental study and prediction analysis of internal temperature of track slab based on optimized meteorological parameters. J Rail Way Sci Eng. 2019;16(5):1120–8.https://doi.org/10.19713/j.cnki.43-1423/u.2019.05.002.
  • 33. Wang EL, Fu X, Han HW, Xie F, Zhuang F. Analysis of thermal conductivity and temperature variation characteristics of seasonal snow in northeast China. Trans Chin Soc Agric Mach. 2021;52(1):275–85.
  • 34. Zhong Y, Gao L, Zhang Y. Effect of daily changing temperaturę on the curling behavior and interface stress of slab track in construction stage. Constr Build Mater. 2018;185:638–47. https://doi.org/10.1016/j.conbuildmat.2018.06.224.
  • 35. Lu H, He Y. Monitoring and research on temperature field and juncture deformation of CRTS II slab ballastless track in high temperature. In: Khalil M, Batoo KM (eds) Proceedings of The 2017 International Seminar on Artificial Intelligence, Networking And Information Technology (Anit 2017), International Seminaron Artificial Intelligence, Networking and Information Technology (ANIT), 2017, p. 132–136.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea0fbde4-daeb-4d41-a7ed-5e4d37dcbcb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.