PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Modified Primary Swirl Sedimentation Tanks in Waste Liquids Treatment Plant : Liquid Viscosity Effect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators containing baffle have been studied under laboratory conditions at hydraulic load from 21 to 64 [m3/(m2·h)]. Analyzed disperser phases were municipal water and glycerol solutions of varying concentration. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the one where baffle is located in the middle of in- and outlet due to the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the constructions of heavy fraction separators.
Rocznik
Strony
42--48
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Poznan University of Technology, Poland
  • Poznan University of Technology, Poland
  • Poznan University of Technology, Poland
  • Poznan University of Technology, Poland
Bibliografia
  • 1. Azzopardi B.J. & Sanaullah K.S. (2002). Re-entrainment in wave-plate mist eliminators, Chemical Engineering Science, 57, pp. 3557-3563.
  • 2. Bajcar T., Gosar L., Širok B., Steinman F. & Rak G. (2010). Influence of flow field on sedimentation efficiency in a circular settling tank with peripheral inflow and central effluent, Chemical Engineering and Processing, 49, pp. 514-522.
  • 3. Bandrowski J., Merta H. & Zioło J. (2001). Sedimentation of suspensions. Rules and design, The Publishing House of the Silesian University of Technology, Gliwice. (in Polish)
  • 4. Błażejewski R. (2015). Solid particle sedimentation. Theoretical fundamentals with application examples, The Polish Science Publishing House, Warszawa. (in Polish)
  • 5. Bürger R., Diehl S., Farâs S., Nopens I. & Torfs E. (2013). A consistent modelling methodology for secondary settling tanks: a reliable numerical method, Water Science and Technology, 68, 1, pp. 192-208, DOI: 10.2166/wst.2013.239.
  • 6. EcoBlue Polska Sp. z o.o. (2013). Designer guide. Separator Blue, Warszawa 2013. (in Polish)
  • 7. Ecol-Unicon Sp. z o.o. (2016). Product catalogue, Gdańsk 2016.
  • 8. Ecol-Unicon Sp. z o.o. (2018) Vortex settling tanks (https://en.ecolunicon.com/products/rain-management-products/vortex-settlingtanks-eow/ (30.01.2018)).
  • 9. Green D.W. & Perry R.H. (2008). Perry’s Chemical Engineers’ Handbook, Eight Edition, McGraw-Hill: New York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City, Milan, New Delhi, San Juan, Seoul, Singapore, Sydney, Toronto, 2008, 1997, 1984, 1973, 1963, 1950, 1941, 1934.
  • 10. Huang C.-C., Lai J.-S., Lee F.-Z. & Tan Y.-C. (2018). Physical Model-Based Investigation of Reservoir Sedimentation Processes, Water, 10, 4, 352, DOI: https://DOI.org/10.3390/w10040352.
  • 11. Jurczak T., Wagner I., Kaczkowski Z., Szklarek S. & Zalewski M. (2018). Hybrid system for the purification of street stormwater runoff supplying urban recreation reservoirs, Ecological Engineering, 110, pp. 67-77, DOI: 10.1016/j.ecoleng.2017.09.019.
  • 12. Królikowska J. (2011). Swirl chamber equipment applied in sewage networks for desoreasing suspended particle load in stormwater sewage, Ecological Engineering, 26, pp. 156-170.
  • 13. Kundzewicz Z.W., Iwanicki J., Kindler J., Gromiec M. & Matczak P. (2014). Water-related threats, Water Management, 10, pp. 353-358.
  • 14. Lekang O-I., Bomo A. M. & Svendsen I. (2001). Biological lamella sedimentation used for wastewater treatment, Aquacultural Engineering, 24, pp. 115-127.
  • 15. MacArthur R.C., Neill C.R., Hall B.R., Galay V.J. & Shvidchenko A.B. (2007). Overview of Sedimentation Engineering. In: M. H. Garcia (Ed.), Sedimentation Engineering. Processes, Measurements, Modeling and Practise, ASCE, Virginia, pp. 1-20.
  • 16. Młyński D., Chmielowski K. & Młyńska A. (2016). Analysis of hydraulic load of a wastewater treatment plant in Jasło, Journal of Water and Land Development, 28, pp. 61-67, DOI: 10.1515/jwld-2016-0006.
  • 17. Nixor Sp. z o.o. (2018). Our products. Separators. Sedimentators, (http://www.nixor.pl/oferta,3,pl.html (31.01.2018)). (in Polish)
  • 18. Ochowiak M., Matuszak M., Włodarczak S., Ancukiewicz M. & Krupińska A. (2017). The modified swirl sedimentation tanks for water purification, Journal of Environmental Management, 189, pp. 22-28, DOI: 10.1016/j.jenvman.2016.12.023.
  • 19. Ochowiak M., Matuszak M., Włodarczak S., Ancukiewicz M. & Krupińska A. (2017). Evaluation of the work of modified swirl sedimentation tank for purification of rainwater stream contaminated by light fraction, Chemical Engineering and Equipment, 56, 4, pp. 132-133. (in Polish)
  • 20. Ochowiak M., Markowska M., Matuszak M. & Włodarczak S. (2018). Analysis of work of a modified swirl separation tank, Chemical Engineering and Equipment, 57, 4, pp. 12-13. (in Polish)
  • 21. Piazza R. (2020) Transport Phenomena in Particle Suspensions: Sedimentation and Thermophoresis. In: Burghelea T. & Bertola V. (Eds), Transport Phenomena in Complex Fluids. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol 598. Springer, Cham, pp. 259-291, DOI: https://doi.org/10.1007/978-3-030-35558-6_6.
  • 22. Pur Aqua System Sp. z o.o. (2018) Oferta, (http://www.puraqua.pl/oferta.html (31.01.2018)).
  • 23. Ramin E., Wágner D. S., Yrde L., Binning P. J., Rasmussen R., Mikkelsen P. S. & Plósz B. G. (2014). A new settling velocity model to describe secondary sedimentation, Water Research, 66, pp. 447-458, DOI: 10.1016/j.watres.2014.08.034.
  • 24. Shah M.T., Parmar H.B., Rhyne L.D., Kalli C., Utikar R.P. & Pareek V.K. (2019). A novel settling tank for produced water treatment: CFD simulations and PIV experiments, Journal of Petroleum Science and Engineering, 182, 106352, DOI: 10.1016/j.petrol.2019.106352.
  • 25. Shannon M.A., Bohn P.W., Elimelech M., Georgiadis J.G., Marinas B.J. & Mayes A.M. (2008). Science and technology for water purification in the coming decades, Nature, 452, pp. 301-310.
  • 26. Szulc P. (2018). Wastewater grit problem - case study, potencial possibilities of disposal and reusage based on Poznań WWTP example, Gas, Water and Sanitary Engineering, 5, pp. 190-193, DOI: 10.15199/17.2018.5.9. (in Polish)
  • 27. Wang S., Metcalfe G., Stewart R.L., Wu J., Ohmura N., Feng X. & Yang C. (2014). Solid-liquid separation by particle-flow instability, Energy and Environmental Science, 7(12), pp. 3982-3988.
  • 28. Wavin Polska S.A. (2015). Rainwater management systems, Product Catalog, Buk 2018. (in Polish)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea0a6b2e-403f-4f51-b26f-695183214118
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.