Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The subject of this research is the human stomatognathic system and the process of biting off various foodstuffs. Methods: The research was divided into two stages – an experimental stage and a computational stage. In the first stage, tests were carried out to determine the force-displacement characteristics for the biting off food. For this purpose five different foodstuffs were tested in a testing machine and their strength characteristics were determined. The aim of the second stage was to build a computational model of the human cranium-mandible system and to run simulations of the process of biting off food in order to determine the muscular forces as a function of the food. A kinematic scheme was developed on the basis of a survey of the literature on the subject and used to create a computational model of the human stomatognathic system by means of dynamic analysis software (LMS DADS). Only the masseter muscle, the temporal muscle and the medial pterygoid muscle were taken into account – the lateral pterygoid muscle was left out. Results: The simulations yielded the basic kinematic and dynamic parameters characterizing the muscles. Conclusions: Summing up, weaker occlusion forces are needed to bite off today’s foodstuffs than the forces which the mastication muscles are capable of generating. Determined in the article the general equations will enable identification of the muscular forces acting on the mandible during biting off, performing basic strength calculations, and will also give an answer to which of the products the patient after a surgical procedure will be able to consume.
Czasopismo
Rocznik
Tom
Strony
81--91
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Wrocław University of Science Technology, Faculty of Mechanical Engineering, Wrocław, Poland
autor
- Wrocław University of Science Technology, Faculty of Mechanical Engineering, Wrocław, Poland
Bibliografia
- [1] ALEKSANDROWICZ R., CISZEK B., Anatomia kliniczna głowy i szyi, Wydawnictwo Lekarskie PZWL, Warszawa, 2007.
- [2] BĘDZIŃSKI R., Biomechanika inżynierska. Zagadnienia wybrane, Wrocław University of Technology, 1997, (in Polish).
- [3] CHLADEK W., Systemy modelowania wybranych stanów mechanicznych żuchwy ludzkiej, Zeszyty Naukowe Politechniki Śląskiej, Gliwice, 2000, (in Polish).
- [4] DAUMAS B., XU W., BRONLUND J., Jaw mechanism modeling and simulation, Mech. Mach. Theory, 2005, Vol. 40, 821–833.
- [5] DEVEZEAUX DE LAVERGNE M., DERKS J.A.M., KETEL E.C., DE WIJK R.A., STIEGER M., Eating behaviour explains differences between individuals in dynamic texture perception of sausages, Food Qual. Prefer., 2015, Vol. 41, 189–200.
- [6] ENGELEN L., FONTIJN-TEKAMP A., VAN DER BILT A., The influence of product and oral characteristics on swallowing, Arch. Oral Biol., 2005, Vol. 50, 739–746.
- [7] FAULKNER M., HATCHER D., HAY A., A three-dimensional investigation of temporomandibular joint loading, J. Biomech., 1987, Vol. 20, 997–1002.
- [8] HAUG E.J., Computer aided kinematics and dynamics of mechanical systems, Allyn and Bacon, Boston, 1989.
- [9] HUTCHINGS S.C., FOSTER K.D., BRONLUND J.E., LENTLE R.G., JONES J.R., MORGENSTERN M.P., Particle breakdown dynamics of heterogeneous foods during mastication: Peanuts embedded inside different food matrices, J. Food Eng., 2012, Vol. 109, 736–744.
- 10] KOHYAMA K., SASAKI T., HAYAKAWA F., Characterization of Food Physical Properties by the Mastication Parameters Measured by Electromyography of the Jaw-Closing Muscles and Mandibular Kinematics in Young Adults, Biosci. Biotechnol. Biochem., 2008, Vol. 72, 1690–1695.
- [11] KOOLSTRA J.H., VAN EIJDEN J., The Jaw open-close movements predicted by biomechanical modelling, J. Biomech., 1997, Vol. 30, 943–950.
- [12] KRZEMIEŃ J., BARON S., Axiographic and clinical assessment of temporomandibular Joint function in patients with partial edentulism, Acta Bioeng. Biomech., 2013, Vol. 15, 19–26.
- [13] LIPSKI T., CHLADEK W., ŻMUDZKI J., Impact of chosen features of anatomical faces on work of muscles of the mandible and loads of temporomandibular joints, Pro. Stom., 2006, LVI, 1.
- [14] MAJEWSKI S., Gnatofizjologia stomatologiczna. Normy okluzji i funkcje układu stomatognatycznego, PZWL, 2007, (in Polish).
- [15] MANNS A., DÍAZ G., Sistema Estomatognatico, Sociedad Grafica Almagro Ltda., Santiago de Chile, 1988.
- [16] MARGIELEWICZ J., Modelowanie numeryczne w rozpoznawaniu stanów biomechanicznych układu stomatognatycznego, Polskie Towarzystwo Inżynierii Biomedycznej, Zabrze, 2010, (in Polish).
- [17] MARGIELEWICZ J., CHLADEK W., KIJAK E., FRĄCZAK B., Ocena aktywności mięśni żwaczowych na podstawie zarejestrowanych ruchów żuchwy, Protet. Stomatol., 2008, LVIII, 5, 383–390, (in Polish).
- [18] MARGIELEWICZ J., CHLADEK W., LIPSKI T., Kinematical analysis of mandibular motion in a sagittal plane, Acta Bioeng. Biomech., 2008, Vol. 10, 9–19.
- [19] MEYER CH., KAHN J.L., LAMBERT A., BOUTEMY P., WILK A., Development of a static simulator of the mandible, J. Cranio Maxillofac. Surg., 2000, Vol. 28, 278–286.
- [20] MURRAY G.M., ORFANOS T., CHAN J.Y., WANIGARATNE K., KLINEBERG I.J., Electromyographic activity of the human lateral pterygoid muscle during contralateral and protrusive jaw movements, Arch. Oral Biol., 1999, Vol. 44, 269–285.
- [21] NALLASWAMY D., Textbook of prosthodontics, JAYPEE, New Delhi, 2003.
- [22] OHKURA K., HARADA K., MORISHIMA S., ENOMOTO S., Changes in bite force and occlusal contact area after orthognathic surgery for correction of mandibular prognathism, J. Oral Maxillofac. Surg., 2001, Vol. 91, 141–145.
- [23] PROSCHEL P.A., JAMAL T., MORNEBURG T.R., Motor control of Jaw muscles in chewing and in isometric biting with graded narrowing of jaw gape, J. Oral Rehabil., 2008, Vol. 35, 722–728.
- [24] PRUIM G.J., DE JONGHÎ H.J., TEN BOSCH J.J., Forces acting on the mandible during bilateral static bite at different bite force levels, J. Biomech., 1980, Vol. 13, 755–763.
- [25] RADU M., MARANDICI M., HOTTEL T.L., The effect of clenching on condylar position: A vector analysis model, Prosthet. Dent., 2004, Vol. 91, 171–179.
- [26] REINA J.M., GARCIA-AZNAR J.M., DOMINGUEZ J., DOBLARÉ M., Numerical estimation of bone density and elastic constants distribution in a human mandible, J. Biomech., 2007, Vol. 40, 826–836.
- [27] STRÓŻYK P., SZUST A., Wpływ przypadku obciążenia na wartość sił występujących w mięśniach unoszących żuchwy, SPR, Wrocław University of Technology, 2013, (in Polish).
- [28] TOURNIER C., GRASS M., ZOPE D., SALLES C., BERTRAND D., Characterization of bread breakdown during mastication by image texture analysis, J. Food Eng., 2012, Vol. 113, 615–622.
- [29] WANG J.S., STOHLER C.S., Predicting foodstuff from jaw dynamics during masticatory crushing in man, Arch. Oral Bid., 1991, Vol. 36, 239–244.
- [30] WEIJS W.A., HILLEN B., Relationship between the physiological cross section of human jaw muscle and their cross-sectional area in computer tomograms, Acta Anat., 1984, Vol. 118, 129–138.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea07b245-e64a-4114-b38b-4ac06555c41a