PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synergy effect of heat and surface treatment on properties of the Mg-Al-Zn cast alloys

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper is to present the results of the author’s own investigations concerning heat and surface treatment of Mg-Al-Zn magnesium alloys. Design/methodology/approach: The test results presented concern the characteristics of synergic heat and surface treatment impact on the structure and properties of Mg-Al-Zn cast magnesium alloys. The surface treatment of the magnesium alloys was carried out with the use of chemical and physical deposition methods from PA CVD and CAE PVD gas phase and laser surface treatment, including in particular laser feeding of hard ceramic particles into the surface of materials produced, enabling the production of a quasi-composite MMCs (Metal Matrix Composites) structure. The tests of the surface and internal structure of materials with the use of macro- and microscopic methods were made with the use of light, transmission and scanning electron microscopy as well Raman spectrometry and X-ray phase analysis. The physical and mechanical properties of magnesium alloys after the standard heat and surface treatment operations were tested by methods appropriate for the properties. Findings: The results of mechanical and functional properties measurements of heat treated samples confirms, that the performed heat treatment, consisting of solution heat treatment with cooling in water, as well aging with cooling in air, causes strengthening of the MCMgAl12Zn1, MCMgAl9Zn1 and MCMgAl6Zn1 cast magnesium alloys according to the precipitation strengthening mechanism, induced by inhibition of dislocation movement due to the influence of strain fields of the homogeny distributed y-phase Mg17Al12 precipitates. The combination of properly chosen heat treatment with the possibilities of structure- and phase composition modeling of the magnesium alloys matrix using laser feeding provides an additive increase of mechanical and functional properties by significant grain refinement and production of micro-composite layers with homogeny distributed dispersion phases particle and characteristic zone structure. Increase of mechanical and functional properties of the investigated alloys is also possible by creating coatings on the surface from the gas phase. Practical implication Achieving of new operational and functional characteristics and properties of commonly used materials, including the Mg-Al-Zn alloys is often obtained by heat treatment, ie, precipitation hardening and/or surface treatment due to application or manufacturing of machined surface layer coatings of materials in a given group of materials used for different surface engineering processes. Originality/value: The originality of this paper consists in the presentation of a very extensive knowledge related to the methods of structure and properties forming of the surface of Mg-Al-Zn alloys, supported by the results of wide author’s research.
Rocznik
Strony
260--274
Opis fizyczny
Bibliogr. 68 poz., rys.
Twórcy
autor
  • Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] T. Tański, Synergy effect of heat and surface treatment on properties of the Mg-Al-Zn cast alloys, Habilitation thesis not published, Žilinska Univerzita v Žiline, Žilina 2012.
  • [2] L.A. Dobrzański, T. Tański, J. Domagała, Microstructure analysis of MCMgAl16Zn1 MCMgAl8Zn1 MCMgAl4Zn1 magnesium cast alloy, Archives of Foundry Engineering 7/4 (2007) 33-38.
  • [3] L.A. Dobrzański, T. Tański, L. Čížek, J. Domagała, Mechanical properties and wear resistance of magnesium casting alloys, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 83-90.
  • [4] L.A. Dobrzański, T. Tański, L. Čížek, Z. Brytan, Structure and properties of the magnesium casting alloys, Journal of Materials Processing Technology 192-193 (2007) 567-574.
  • [5] L. Čížek, M. Greger, L. Pawlica, L.A. Dobrzański, T. Tański, Study of selected properties of magnesium alloy AZ91 after heat treatment and forming, Journal of Materials Processing Technology 157-158 (2004) 466-471.
  • [6] L.A. Dobrzański, T. Tański, L. Čížek: Microstructure of MCMgAl12Zn1 magnesium alloy, Archives of Foundry Engineering 7/1 (2007) 179-182.
  • [7] L.A. Dobrzański, T. Tański, Influence of aluminium content on behaviour of magnesium cast alloys in bentonite sand mould, Solid State Phenomena 147-149 (2009) 764-769.
  • [8] L.A. Dobrzański, T. Tański, J. Trzaska, Optimization of heat treatment conditions of magnesium cast alloys, Materials Science Forum 638-642 (2010) 1488-1493.
  • [9] M. Krupiński, T. Tański, Prediction of mechanical properties of cast Mg-Al-Zn alloys, Archives of Materials Science and Engineering 56/1 (2012) 30-36.
  • [10] L. A. Dobrzański, T. Tański, Sz. Malara, M. Król, Structure and properties investigation of an magnesium alloys processed by heat treatment and laser surface treatment, Materials Science Forum 674 (2011) 11-18.
  • [11] L.A. Dobrzański, T. Tański, Sz. Malara, M. Król, J. Domagała-Dubiel, Contemporary forming methods of the structure and properties of cast magnesium alloys, Magnesium alloys - design, processing and properties, Frank Czerwiński (Ed.), InTech, 2011, 321-350.
  • [12] L.A. Dobrzański, T. Tański, J. Domagała, Sz. Malara, M. Król, Effect of high power diode laser surface melting and cooling rate on microstructure and properties of magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 238-257.
  • [13] A.D. Dobrzańska-Danikiewicz, T. Tański, S. Malara, J. Domagała-Dubiel, Assessment of strategic development perspectives of laser treatment of casting magnesium alloys, Archives of Materials Science Engineering 45/1 (2010) 5-39.
  • [14] L.A. Dobrzański, T. Tański, J. Domagała, Sz. Malara, A. Klimpel, Laser surface treatment of Mg-Al-Zn alloys, Journal for Theory and Application in Mechanical Engineering 53/1 (2011) 5-10.
  • [15] A.D. Dobrzańska-Danikiewicz, T. Tański, J. Domagała-Dubiel, Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys, Archives of Civil and Mechanical Engineering 12 (in print).
  • [16] A.D. Dobrzańska-Danikiewicz, T. Tański, J. Domagała-Dubiel, S. Malara, Technology Foresight results concerning laser surface treatment of casting magnesium alloys, Magnesium alloys, W.A. Monteiro (Ed.), InTech, 53-78.
  • [17] T. Tański, Characteristics of hard coatings on AZ61 magnesium alloys, Journal of Mechanical Engineering 2012 (in print).
  • [18] T. Tański, Surface layers on the Mg-Al-Zn alloys coated using the CVD and PVD physical and chemical evaporation methods, Journal of Achievements in Materials and Manufacturing Engineering 53/2 (2012) 89-96.
  • [19] T. Tański, Investigation of the structure and properties of PVD and PACVD-coated magnesium die cast alloys, Magnesium alloys, W.A. Monteiro (Ed.), InTech, 29-52.
  • [20] T. Tański, K. Labisz, K. Lukaszkowicz, Structure and properties of diamond-like carbon coatings deposited on non-ferrous alloys substrate, Solid State Phenomena (in print).
  • [21] L.A. Dobrzański, T. Tański, Sz. Malara, Effect of the heat and surface laser treatment on the corrosion degradation of the Mg-Al alloys, Materials Engineering - Materiálové Inžmierstvo 18 (2011) 85-92.
  • [22] T. Tański, Structural, mechanical and corrosion resistance properties of gradient/monolithic coatings deposited by PVD and PACVD methods onto the magnesium alloys, Thin Solid Films 2012 (in print).
  • [23] http://minerals.usgs.gov/minerals/pubs/commodity/magnesi um/mcs-2012-mgmet.pdf.
  • [24] M. Campo, M. Carboneras, M.D. López, B. Torres, P. Rodrigo, E. Otero, J. Rams, Corrosion resistance of thermally sprayed Al and Al/SiC coatings on Mg, Surface and Coatings Technology 203/20-21 (2009) 3224-3230.
  • [25] M.C Turhan, R.P. Lynch, H. Jha, P. Schmuki, S. Virtanen, Anodic growth of self-ordered magnesium oxy-fluoride nanoporous/tubular layers on Mg alloy (WE43), Electrochemistry Communications 12/6 (2010) 796-799.
  • [26] X. Fan, Y. Liu, Z. Xu, Y. Wang, B. Zou, L. Gu, Ch. Wang, X. Chen, Z.S Khan; D.W Yang; X.Q Cao, Preparation and Characterization of 8YSZ Thermal Barrier Coatings on Rare Earth-Magnesium Alloy, Journal of Thermal Spray Technology 20/4 (2011) 948-957.
  • [27] M. Avedesian, H. Baker (Eds.), ASM Specialty Handbook, Magnesium and magnesium alloys, ASM International, The Materials Information Society, USA, 1999.
  • [28] A. Fajkiel, P. Dudek, G. Sęk-Sas, Foundry engineering XXI c, Directions of metallurgy development and light alloys casting, Publishers Institute of Foundry Engineering, Cracow, 2002.
  • [29] K.U. Kainem, Magnesium - alloys and technology, Willey-VH, Weinheim, 2003.
  • [30] E.F. Horst, B.L. Mordike, Magnesium technology, Metallurgy, design data, application, Springer-Verlag, Berlin Heidelberg, 2006.
  • [31] K.N. Braszczyńska-Malik, Precipitates of y-Mg17Al12 phase in AZ91 alloy, Contemporary forming methods of the structure and properties of cast magnesium alloys, Magnesium alloys - design, processing and properties, F. Czerwinski (Ed.), InTech, 2011, 95-112.
  • [32] M. Marya, L.G. Hector, R. Verma, W. Tong, Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors, Materials Science and Engineering A 418 (2006) 341-356.
  • [33] J. Hirmke, M.X. Zhang, D.H. S. John, Surface alloying of AZ91E alloy by Al-Zn packed powder diffusion coating, Surface and Coatings Technology 206/2-3 (2011) 425-433.
  • [34] Y. Guangyin, L. Manping, D. Wenjiang, A. Inoue, Microstructure and mechanical properties of Mg-Zn-Si based alloys, Materials Science and Engineering A 357 (2003) 314-320.
  • [35] C. Jaschic, H. Haferkamp, M. Niemeyer, New magnesium wrought alloys, Magnesium alloys and their applications, K.U. Kainem (Ed.), Willey-VH, Weinheim, 2000, 41-45.
  • [36] J.S. Knut, Magnesium motorcycle wheels for racing applications, in: Magnesium Alloys and their Applications, K.U. Kainem (Ed.), Willey-VH, Weinheim, 2000, 391-395.
  • [37] C.D. Yima, K.S. Shinb, Changes in microstructure and hardness of rheocast AZ91HP magnesium alloy with stirring conditions, Materials Science and Engineering A 395 (2005) 226-232.
  • [38] P. Venkateswarana, S.G. Sundara Ramana, S.D. Pathaka, Y. Miyashitab, Y. Mutoh, Fatigue crack growth behaviour of a die-cast magnesium alloy AZ91D, Materials Letters 58 (2004) 2525-2529.
  • [39] T. Murai, S. Matsuoka, S. Miyamoto, Y. Oki, Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions, Journal of Materials Processing Technology 141 (2003) 207-212.
  • [40] Z. Zhang, X. Zeng, W. Ding, The influence of heat treatment on damping response of AZ91D magnesium alloy, Materials Science and Engineering A 392 (2005) 150-155.
  • [41] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys-a critical review, Journal of Alloys and Compounds 336 (2002) 88-113.
  • [42] H. Altun, S. Sen, The effect of DC magnetron sputtering AlN coatings on the corrosion behavior of magnesium alloys, Surface and Coatings Technology 197 (2005) 193-200.
  • [43] G. Wu, W. Dai, H. Zheng, A. Wang, Improving wear resistance and corrosion resistance of AZ31 magnesium alloy by DLC/AlN/Al coating, Surface and Coatings Technology 205 (2010) 2067-2073.
  • [44] Y.J. Shi, S.Y. Long, S.C. Yang, F.S. Pan, Deposition of nano-scaled CrTiAlN multilayer coatings with different negative bias voltage on Mg alloy by unbalanced magnetron sputtering, Vacuum 84 (2010) 962-968.
  • [45] H. Zhao, X.H. Wang, Q.L. Liu, L.J. Chen, Z. Liu, Structure and wear resistance of TiN and TiAlN coatings on AZ91 alloy deposited by multi-arc ion plating, Transactions of Nonferrous Metals Society of China 20 (2010) 679-682.
  • [46] Z.M. Liu, W. Gao, Electroless nickel plating on AZ91 Mg alloy substrate, Surface and Coatings Technology 200 (2006) 5087-5093.
  • [47] M.X. Zhang, P.M. Kelly, Surface alloying of AZ91D alloy by diffusion coating, Journal of Materials Research 17 (2002) 2477-2479.
  • [48] S. Guldberg, N. Ryum, Microstructure and crystallographic orientation relationship in directionally solidified Mg-Mg17Al12-eutectic, Materials Science and Engineering A 289 (2000) 143-150.
  • [49] G. Abbas, L. Li, U. Ghazanfar, Z. Liu, Effect of high power diode laser surface melting on wear resistance of magnesium alloys, Wear 260 (2006) 175-180.
  • [50] G. Abbas, L. Li, Z. Liu, Effect of high power diode laser surface melting on corrosion resistance of magnesium alloys, Proceedings of the 34th MATADOR International Conference, Manchester, 2004, 225-234.
  • [51] G. Abbas, Z. Liu, P. Skeldon, Corrosion behaviour of lasermelted magnesium alloys, Applied Surface Science 247 (2005) 347-353.
  • [52] D. Dube, M. Fiset, A. Couture, I. Nakatsugawa, Characterization and performance of laser melted AZ91D and AM60B, Materials Science and Engineering A 299 (2001) 38-45.
  • [53] S.F. Hassan, M. Gupta, Development of ductile magnesium composite materials using titanium as reinforcement, Journal of Alloys and Compounds 345 (2002) 246-251.
  • [54] S.F. Hassan, M. Gupta, Effect of submicron size Al2O3 particulates on microstructural and tensile properties of elemental Mg, Journal of Alloys and Compounds 457 (2008) 244-250.
  • [55] Y. Jun, G.P. Sunb, S.S. Jia, Characterization and wear resistance of laser surface melting AZ91D alloy, Journal of Alloys and Compounds 455 (2008) 142-147.
  • [56] J.D. Majumdar, R. Galun, B.L. Mordike, I. Manna, Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy, Materials Science Engineering A 361 (2003) 119-129.
  • [57] Y.S. Zou, Y.F. Wu, H. Yang, K. Cang, G.H. Song, Z.X. Li, K. Zhou, The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy, Applied Surface Science 258 (2011) 1624-1629.
  • [58] H. Altun, S. Sen, Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy, Materials and Design 25 (2004) 637-643.
  • [59] G. Ballerini, U. Bardi, R. Bignucolo, G. Ceraolo, About some corrosion mechanisms of AZ91D magnesium alloy, Corrosion Science 47 (2005) 2173-2184.
  • [60] E.M. Gutman, A. Eliezer, Ya. Unigovski, E. Abramov, Mechanoelectrochemical behavior and creep corrosion of magnesium alloys, Materials Science and Engineering A 302 (2001) 63-67.
  • [61] Y.F. Jiang, X.W. Guo, Y.H. Wei, C.Q. Zhai, W.J. Ding, Corrosion protection of polypyrrole electrodeposited on AZ91 magnesium alloys in alkaline solutions, Synthetic Metals 139 (2003) 335-339.
  • [62] H. Altun, S. Sen, The effect of PVD coatings on the corrosion behavior of AZ91 magnesium alloy, Materials and Design 27 (2006) 1174-1179.
  • [63] H. Altun, S. Sen, The effect of PVD coatings on the wear behavior of magnesium alloys, Materials Characterization 58 (2007) 917-921.
  • [64] J. Chen, J. Wang, E. Han, J. Dong, W. Ke, States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution, Corrosion Science 50 (2008) 1292-1305.
  • [65] Y. Gao, C. Wang, H. Pang, H. Liu, M. Yao, The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy, Applied Surface Science 253 (2007) 5306-5311.
  • [66] L.A. Dobrzański, Design and manufacturing of functional gradient tool materials - relationship between properties, technology and thickness of the surface layers with a gradient of chemical or phase composition produced on tools for various applications, Design and manufacturing of functional gradient materials, Polish Academy of Sciences, Cracow, 2007.
  • [67] A. Michalski, Physicochemical basics of coatings achievment from the gas phase, Publishing House of Warsaw University, Warsaw, 2000.
  • [68] L.A. Dobrzański, M. Staszuk, PVD and CVD gradient coatings on sintered carbides and sialon tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 552-576.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea073ef9-aaa4-40c9-9370-9cd9669a4cb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.