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Enhancing energy efficiency for optimal multiple
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inertia weight control strategies in PSO algorithms

ABSTRACT: Recently, interest in incorporating distributed generators (DGs) into electrical distribution ne-
tworks has significantly increased throughout the globe due to the technological advancements that
have led to lowering the cost of electricity, reducing power losses, enhancing power system relia-
bility, and improving the voltage profile. These benefits can be maximized if the optimal allocation
and sizing of DGs into a radial distribution system (RDS) are properly designed and developed.
Getting the optimal location and size of DG units to be installed into an existing RDS depends
on the various constraints, which are sometimes overlapping or contradicting. In the last decade,
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meta-heuristic search and optimization algorithms have been frequently developed to handle the
constraints and obtain the optimal DG location and size. This paper proposes an efficient optimi-
zation technique to optimally allocate multiple DG units into a RDS. The proposed optimization
method considers the integration of solar photovoltaic (PV) based DG units in power distribution
networks. It is based on multi-objective function (MOF) that aims to maximize the net saving level
(NSL), voltage deviation level (VDL), active power loss level (APLL), environmental pollution
reduction level (EPRL), and short circuit level (SCL). The proposed algorithms using various stra-
tegies of inertia weight particle swarm optimization (PSO) are applied on the standard IEEE 69-bus
system and a real 205-bus Algerian distribution system. The proposed approach and design of such
a complicated multi-objective functions are ultimately to make considerable improvements in the
technical, economic, and environmental aspects of power distribution networks. It was found that
EIW-PSO is the best applied algorithm as it achieves the maximum targets on various quantities;
it gives 75.8359%, 28.9642%, and 64.2829% for the APLL, EPRL, and VDL, respectively, with
DG units’ installation in the IEEE 69-bus test system. For the same number of DG units, EIW-PSO
gives remarkable improved performance with the Adrar City 205-bus test system; numerically,
it shows 72.3080%, 22.2027%, and 63.6963% for the APLL, EPRL, and VDL, respectively. The
simulation results of this study prove that the proposed algorithms exhibit higher capability and
efficiency in fixing the optimum DG settings.

KEeYwoRrDSs: renewable-based distributed generation, maximization of energy efficiency, techno-economic
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Nomenclature

Pross OLoss Total active and reactive power losses

Py, O; Active and reactive power between branch i, j
P, 0; Active and reactive power at bus i

Npus Number of buses in the network

Rij, X,-j Reactance and resistance of the line ij

Z; Impedance of the distribution line ij

S Apparent power between branch

Smax Maximum limits of apparent power

V., o, Voltage magnitude and angle at bus i

Pg, Og Powers injected by substation

Pp, Op Powers of load demand

Ppg Active power delivered by PV-DG unit
Vinins Vimax Allowable limits of voltages

AV hax Upper limits of voltage drop at each branch



npy.pG, i Location of PV-DG units at bus i

Npy.pG.max Maximum number of PV-DG units

Npy.pG Number of PV-DG units

PV-DGpgision  Position of PV-DG unit

T Equal to 8760 hours per year

K, Incremental cost of Py, equal to 0.06 ($/kW)
EG, Emission quantity of a generator pollutant
AE, Emission quantity of substation

€1, € Acceleration coefficient factors

Wmax, Wmin

Maximum and minimum values of the w

k’ kmax

ry,,r

Current and maximum number of iterations

Random values between 0 and 1

Introduction

The optimal DG incorporation into electrical distribution networks provides many technical
and economic benefits, such as: reduction in power loss, reduction in energy purchase from the
grid, improved bus voltage, and enhanced system stability and reliability (Bayod-Rujula 2009;
El-Khattam et al. 2004).

Identifying the optimum DG location is, in general, a complex non-linear optimization pro-
blem. The literature in this research area can be divided into several categories based on the
considered constraints, objectives, and solution algorithms (Mahmoud Pesaran et al. 2017).

There are numerous objective functions formulated to determine the optimal locations and
sizes of DG units. Some of these significant objective functions include the minimization of the
following factors: loss sensitive factor for finding the weak buses, in addition to the main objecti-
ve of reducing the active power losses (Yang et al. 2018). Other methods incorporated an applied
moth-flame optimization (MFO) algorithm, which is based on the minimization of active power
loss (Settoul et al. 2019a). Minimization of active and reactive power losses in RDS using an
analytic method was also performed (Naik et al. 2015). A single objective based on the minimi-
zation of power and energy losses by using a genetic algorithm have been presented (Hassan et
al. 2017). An implanted MFO algorithm to reduce active power loss and Voltage Stability Index
(VSI) considering various renewable energy-based DG units have been addressed (Settoul et al.
2019b). An applied teaching-learning-based optimization technique to minimize voltage devia-
tion, active power loss, and the maximization of VSI has been published (Quadr et al. 2019).
The authors in (Hassan et al. 2019) proposed a multi-verse optimizer algorithm to minimize
three indices, which are the annual losses cost, total voltage variation, and apparent power loss.
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A mixed-integer linear programming model was proposed to find the optimal short-term plan of
RDS considering siting of DG sources and voltage regulators allocation to minimize the energy
cost supplied (Dominguez et al. 2019).

A multi-objective PSO based on the minimization of he total operational cost and risk factor
has been presented (Ganguly et al. 2013). An optimal power factor of DG has been used for
minimization power losses, total cost and carbon emissions (Hung et al. 2014). A sine-cosine
algorithm based was deployed for minimizing the total power losses, total voltage deviation, and
VSI considering four typical days of the four seasons in the year (Selim et al. 2020). The mini-
mization of active power loss, total harmonic distortion (THD), and the total cost of DG units by
considering different types of loads was presented (Fard et al. 2018).

Practically, most of these operational objectives are inherently inconsistent and conflict
with each other. Hence, the problem of allocating DGs in RDS becomes a complex multi-ob-
jective function (MOF) problem since it is quite hard to simultancously optimize multiple
conflicting objectives. Finding the best compromise among all the objectives is also difficult
since the optimization algorithms are typically designed to fulfill a single objective (Saha et
al. 2019).

This paper addresses the optimal incorporation of multiple PV-based DG units in RDS using
various inertia weight PSO Algorithms. This paper aims to solve the optimal allocation of DG
problem in a RDS using a new optimization algorithm to reduce various technical and economic
parameters.

In this study, the optimal deployment of renewable-based DGs was applied and tested on
a standard IEEE 69-bus, and practical (205-bus) RDS of Adrar city, which is a system in the Al-
gerian RDS. The optimal integration is designed to maximize the following levels: NSL, VDL,
APLL, EPRL, and SCL.

This paper comprises five sections followed by a references list, which is organized as fol-
lows: Section 2 demonstrates the problem formulation; Section 3 presented the overview of
various inertia weight control strategies in PSO algorithms; Section 4 contains the results of the
simulation, discussions; Section 5 presents the results of the comparisons with published papers
in the literature; finally, the conclusions and future perspectives are addressed in Section 6.

1. Problem formulation

1.1. Multi-objective function

The multi-objective level considered in this paper to solve the problem of finding the optimal
size and location of PV-DG, planning by giving a specified weight for each level can be formu-
lated as follows:

62



NBIIJ NBIIA‘
MOF =Max) > (& APLL, ; +a,.SCL, ; + a3 VDL, +a ,NSL; ; +a s EPRL;) (1)
i=l j=2

where:
ay, 0y, a3, oy and a; — the weighting factors. The choice of the weighting factors are depen-
ding on the importance of each objective function, in several re-
search and practical factors.

In this paper, due to the importance of the reduction of power loss for the reliability of the
system and for its direct influence on minimizing the cost, so due to these two advantages «; is
taken as 0.30, in addition, for the technical reason a,, a3 and a, are taken as 0.20, and finally, o5
is taken as 0.10. The proposed levels can be given as:

The first level is the active power loss (APLL), which can be represented as follows (Lasmari
et al. 2020a):

Before DG
APLL = —Loss . x100 )
Before DG After DG
P Lo!s Iy Lo/sts

where:
P; s> can be given as (Belbachir et al. 2021):

(77 +0)) 5

The second level is the voltage deviation (VDL), which can be expressed as follows (Ameli
et al. 2014):

VDy,.
VDL = Before DG

x100 )
VDBefore pc t VDAfter DG

where

D =[1-v)| ®)

The expression of the short circuit level (SCL) can be calculated as per the equation below
(Parizad et al. 2018):

SC tfrer _Sceure
e, = 2SS der DG Before DG

100 6)
S CBefore DG
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where

V.
sc=—L

Z;

The fourth level is the net saving level (NSL) which can be express as follows:

AL CBe/bre DG — AL CAfter DG y

NSL = 100

AL CBeﬁJre DG

The annual losses cost (ALC), can be calculated as (Hassan et al. 2019):

ALC =P,

Loss

xKpxT

Finally, the environmental pollution reduction level (EPRL) can be expressed as:

PE yfer DG

EPRL = x100

PEBefore pc t PEAfter DG

where:

PE— Pollution of Emissions, which can be expressed as (Chiradeja et la. 2004):

PE =EG,.AE,

1.2. Power Balance Constraint

The power balance equations can be formulated as below (Hung et al. 2014):

P +Pyg =Py + P

0SS

QG = QD + QLoss
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1.3. Distribution Line Constraints

The inequality constraint of the line can be expressed as follows:

RA R (14)
Vmin S|Vi|SVmax (15)
V=V | < AV e (16)

1.4. The constraints related to PV-based DGs

The inequality constraint of PV-DG can be expressed as follows (Zellagui et al. 2021):

P < P < PR (17)
2 < DGpygition < Ny (18)

Npe = Npg.max (19)
npg.; | Location <1 (20)

2. An overview of IW control strategies in PSO algorithms

The basic PSO algorithm was first proposed in 1995 as a population-based stochastic optimi-
zation algorithm, which can be seen as a global search technique. The population of individuals
(P) or swarm evolves through successive iterations. At each iteration &, each particle is moved
according to the equations (Kennedy et al. 1995):
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VikJr1 :WXV;k—i_cl Xn X[ﬂllzst _Xl'k:|+CZXFZXI:GIfest _Xlk:| 2

Xik+1 =X,k +Vik+l (22)

Inertia weight w is an important parameter in the PSO algorithm, which was originally pro-
posed (Parizad et al. 2018) which has a critical role for the guaranteed efficiency of PSO. Since
the introduction of this parameter, there has been a number of proposals of different strategies to
determine the value of w during a course of run (varied for each iteration and execution).

To suggest an appropriate strategy for a user of PSO involving w, comprehensive studies
have been performed in this paper using nine different w-related strategies, namely adaptive
inertia weight (AIW-PSO), inertia weight with Butterworth (B-PSO), chaotic decreasing inertia
weight (CDIW-PSO), decreasing inertia weight with non-linear coefficient (DW), exponential
inertia weight (EIW-PSO), nonlinear inertia weight variation for dynamic adaptation (NLDA),
nonlinear improved inertia weight (NLI), oscillating inertia weight (OIW), and random inertia
weight (RIW) are shown in Table 1.

TABLE 1. Various inertia weight strategies of PSO algorithms

TABELA 1. Rozne warianty wag bezwtadnosci algorytmow PSO

No. | Algorithm Reference Formula of Inertia Weight Value
1 2 3 4 5
Nickabadi et in=0.4
1 AIW-PSO ( :l: ;0?1; ¢ W= Wnin + (Wmax ~ Wmin) - Ps (k) ::rl:;i ~0.9
(Zhu et al. _ . 1 . Py = kinax/3
2| BFSO 2018) Y= Minax Ly | Py=10
1+ (—J
D1
Feng et al. g =k =04
3 | comw-pso | eznogl ‘;) : B ' N Wimin ~ 0o
W=Z * Wiin + Wmax ~ Winin) Wmax = Y-
(Fan et al. 2\ —
4 DW-PSO 2007) w= T a=03
p a=2
(Ting et al. ,w{ k ] -
5 | EIW-PSO 2012) T U p=2
0 ) 0.9
Chatterjee et kmax — k"
6 | NLDA-PSO ( al. 20J06) w= {m::l} (Wmin ~ Wmax ) + Wmax n=0.6
max
Liao et al. _
7 | NLI-PSO ( lza(‘)’l‘;)a W= Wy - (1.0002) % Winax = 0.9
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1 2 3 4 5
Wmnin + @k, Bk +Win Cos(an(4k + 6))
2 2 T

(Kentzoglana- _ if k<y T=2xy/17

8§ | OIW-PSO | is cral 2000y | " otherwise y= 3%k, /4
Wmin
(Eberhart et al. o
- =0.5+— =

9 RIW-PSO 2001) w + 5 o= random [0 1]

Different time-varying updating strategies for the inertia weight parameter in various PSO

algorithms are traced in Figure 1. As shown in Figure 1, there is a variation of inertia weight with

iterations. In general, this variation spans between 0.4 and 0.9.

The inertia weight of the DW-PSO algorithm decreases quickly compared to other algo-

rithms, which signifies a rapid convergence. Nevertheless, the efficiency and accuracy indices of

these algorithms for the optimal DG location and size will be verified in the next section.
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Fig. 1. Inertia weight variation for different PSO algorithms

Rys. 1. Zmienno$¢ masy bezwtadnosci dla roznych algorytmow PSO

The flowchart of the PSO algorithm is shown in Figure 2.
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(| mmout System Data (Line and Bus) |
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[ P30 Parameters, Objective Functions and Constraints ]
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| Update Velocity, and position according to Equations {21, 22)
[ F=k+1 1 . Check position and velocity range limitations .
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v

Satisfying Stopping
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I
Yes

No< Display the Best
Optimal Results

Fig. 2. Flowchart of IW-PSO algorithms

Rys. 2. Schemat blokowy algorytméw IW-PSO

3. Testing systems, results and discussions

To evaluate the efficiency and the accuracy of the proposed IW-PSO algorithms, the IEEE-69
bus and the practical Adrar city (Algeria) RDS are considered for testing. The first test system
consists of 69 buses with total active and reactive load of 3,791.9 kW and 2,694.1 kVar, respec-
tively as shown in Figure 3 (Naik et al. 2015).

The second test system is the practical Algerian RDS which compose of 205-bus, also this
system has four principal deviations, with total active and reactive load of 7,839.7 kW and
5,594.0 kVar, respectively, as represented in Figure 4 (Lasmari et al. 2020b).
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Fig. 3. Single line diagram of the IEEE 69-bus RDS

Rys. 3. Schemat pojedynczej linii IEEE 69-bus w promieniowym systemie dystrybucji
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Fig. 4. Single line diagram of practical RDS in Adrar City 205-bus

Rys. 4. Schemat pojedynczej linii rzeczywistego promieniowego systemu dystrybucji dla autobusu 205

w miescie Adrar
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The convergence characteristics of the proposed PSO algorithms for the optimal integration
of multiple PV-based DG units in the two RDS test systems is illustrated in Figure 5.
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Fig. 5. Convergence characteristics of IW-PSO algorithms: a) IEEE 69-bus, b) Adrar City 205-bus
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Figure 5 shows the results obtained when applying the proposed IW-PSO algorithms to both
testing systems. It is clear that each algorithm has a different number of iterations to reach the
optimal solution, where the OITW-PSO, CDIW-PSO DW-PSO converge rapidly with less than
80 iterations. In fact, the DW-PSO algorithm converges the quickest compared to other algo-
rithms, taking less than fifty iterations, and having the least value of MOF. On the other hand,
other algorithms take more than eighty iterations to converge.

In the other extreme, EIW-PSO recorded the maximum value of MOF, which are 52.0079%,
and 50.7391%, respectively, for the first and the second test systems, and it takes more than
110 iterations to attain the optimal solution.

Also, it can be observed that some algorithms such as AIW-PSO converge rapidly in the
two test systems considered in this paper. In addition, the results of 20 runs of each algo-
rithm prove the superiority of EIW-PSO results that are closer to each other compared to
other algorithms.

The optimization results of multiple PV-DGs using different PSO algorithms for the two test
systems are tabulated in Table 2.

TaBLE 2. Comparison of optimization results for all test systems

TABELA 2. Porownanie wynikéw optymalizacji dla wszystkich systemow testowych

(a) IEEE 69-bus

Size MW] | Pposs | Oross | Vemin | APLL | EPRL | SCL | NSL | VDL | MOF
(location) | [kW] | [kVarl | [pu] | [%] | [%] | [%] | [%] | [%] | [%]

1 2 3 4 5 6 7 8 9 10 11

0.7448 (14)
Basic PSO | 0.0100 (22) | 74.2008 | 36.8281 | 0.9814 | 75.1960 | 24.8270 | 1.2175 | 67.0142 | 64.5688 | 51.2487
1.7852 (62)

0.6220 (15)
AIW-PSO | 0.0100 (44) | 72.0575 | 36.0130 | 0.9771 | 75.7387 | 27.4309 | 1.1625 | 67.9670 | 64.5359 | 51.8462
1.7142 (61)

0.4293 (27)
B-PSO | 0.0100 (59) | 75.4966 | 37.6329 | 0.9765 | 74.8717 | 30.1786 | 1.0336 | 66.4382 | 64.1006 | 51.4363
1.6926 (62)

0.3649 (22)
CDIW-PSO | 0.1056 (24) | 72.3221 | 36.2927 | 0.9763 | 75.6713 | 29.4651 | 1.0653 | 67.8494 | 64.2804 | 51.9340
1.7164 (61)

0.3640 (23)
DW-PSO | 0.1056 (60) | 83.2038 | 41.3421 | 0.9601 | 72.9991 | 35.6788 | 0.8209 | 63.0120 | 62.2618 | 51.6269
1.1782 (61)

0.3539 (18)
EIW-PSO | 0.1179 (24) | 71.6766 | 36.0317 | 0.9777 | 75.8359 | 28.9642 | 1.0617 | 68.1364 | 64.2829 | 52.0079
1.7546 (61)

0.3437 (21)
0.0100 (27) | 73.0965 | 36.6685 | 0.9770 | 75.4746 | 30.4122 | 0.9484 | 67.5052 | 63.7757 | 51.7880
1.7565 (61)

Methods

NLDA-
-PSO
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2

10

NLI-PSO

0.4748 (18)
0.5053 (54)
1.5795 (63)

73.2179 | 36.7348

0.9781

75.4439

24.5360

1.1339 | 67.4512

64.3341

51.3175

OIW-PSO

0.4687 (18)
0.0390 (27)
17077 (61)

71.7828 | 36.0669

0.9763

75.8088

29.0270

1.0889 | 68.0891

64.3463

51.9982

RIW-PSO

0.2948 (24)
1.0660 (61)
0.7260 (63)

74.1418 | 37.0898

0.9790

75.2109

30.7058

0.8957 | 67.0405

63.4440

51.5535

(b) Adrar City 205-bus

Methods

Size [MW]
(location)

P Loss
(kW]

QLoss
[kVar]

Vmin

[p-u.]

APLL
[%]

EPRL
[%]

SCL
[%]

NSL
[%]

VDL
[%]

MOF
[%]

Basic PSO

2.1674 (33)
1.8016 (73)
0.0100 (111)

232.6199

164.6921

0.9546

69.8836

32.8278

6.7016

56.9050

62.1553

49.4962

AIW-PSO

2.2809 (31)
2.0913 (76)
0.3471 (166)

223.8668

154.9193

0.9538

70.6846

28.5343

7.7411

58.5265

62.8593

50.0137

B-PSO

1.7151 37)
2.1740 (72)
0.3575 (168)

221.4880

153.1897

0.9512

70.9055

31.2916

7.1811

58.9672

62.6644

50.2743

CDIW-PSO

2.0219 (33)
1.1910 (64)
1.2215 (77)

221.5178

157.5614

0.9512

70.9027

30.2171

7.4423

58.9617

62.5166

50.1961

DW-PSO

1.9976 (34)
2.0605 (75)
0.3759 (168)

219.9361

151.9497

0.9530

71.0504

30.2098

7.3810

59.2547

62.8565

50.3520

EIW-PSO

2.1439 (33)
2.3029 (72)
1.2091 (182)

206.7219

138.9249

0.9550

72.3080

22.2027

8.0329

61.7028

63.6963

50.7391

NLDA-PSO

2.1202 (33)
1.1435 (77)
0.9816 (107)

226.8493

160.8734

0.9542

70.4096

31.3295

7.4659

57.9740

62.4923

49.9625

NLI-PSO

1.9929 (35)
1.7575 (72)
0.2523 (116)

229.6264

162.3535

0.9543

70.1555

32.6837

6.8784

57.4595

62.2802

49.7399

OIW-PSO

1.9775 (35)
1.7744 (74)
0.7181 (182)

214.1975

145.8112

0.9538

71.5911

29.9660

6.7969

60.3179

62.7793

50.5517

RIW-PSO

1.3349 (40)
2.1153 (72)
2.1632 (159)

226.0159

156.4488

0.9456

70.4863

22.6450

7.1540

58.1284

62.8033

49.1375
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For both test systems, the results of optimization in Table 2 show that the incorporation of
PV-DGs has a clear effect on all of the study levels, and this observation is valid for all the algo-
rithms used in this study.

A quick glance shows that the performances of all algorithms are quite close to each other.
For the 69-bus IEEE system, it is observed that the EIW exhibit the best results of MOF.

Great improvements in all indices were attained when buses 18, 24 and 61 were selected for
DGs emplacement with sizes of 0.3539, 0.1179, and 1.7546 MW respectively.

This DG setup reduces the active power losses with up to 68.1363%. In another angle, APLL,
NSL, VDL, and SCL are maximized to 75.8359, 68.1364, 64.2829, and 1.0617%, respectively.

By taking a deep look into the results of Adrar city, it turns out that the EIW-PSO algorithm
offers the best results of MOF and chooses buses 33, 72, and 182 as the optimal placements for
PV-DGs integration with a total size of 5.6559 MW.

It is observed that the EIW-PSO showed the best results of all indices, except for the EPRL,
and this is due to the minimization of P . to 206.7219 kW. Concerning the APLL and NSL,
they are maximized to 72.3080% and 61.7028%, respectively.

It is also noticed that SCL and VDL were maximized to 8.0329% and 63.6963% respectively.
The maximum EPRL, obtained by the basic PSO, is 32.8278%. Furthermore, the voltage profile
is improved, and the lowest bus voltage has been pulled up from 0.8825 to 0.9550 p.u.

Figure 6 shows the voltage profiles, before and after the integration of three DG units into the
IEEE 69-bus and Adrar City test systems.

The merit of integrating three PV-DGs, demonstrated in enhancing the voltage profiles of all
buses, is shown in Figure 6, where different voltage profiles are traced according to the algorithm
in use.

In fact, the obtained results reflect the impact of PV-DGs in improving the voltage profiles in
large RDS. For the IEEE69-bus RDS, the voltage profiles of bus groups 1-7 & 28-50 are quite
similar for all algorithms. On the other hand, for the rest of buses, there is noticeable variations
in the voltage profiles.

Among the studied algorithms, the basic PSO recorded the maximum voltage, which re-
commends the optimal location and the largest total size of the PV-DGs (2.54 MW). The worst
voltage profiles are obtained by the DW-PSO in all buses as it recommends the lowest size of
PV-DGs. The minimum bus voltage is 0.9601 p.u., marked on bus 65.

Following this PV-DG integration, the lowest voltage, which equals 0.9456 p.u., is obtained
in the case of applying the RIW-PSO algorithm, while other algorithms have improved bus
voltage values to be greater than 0.95 p.u. The maximum voltage is recorded when applying
EIW-PSO as it is pulled up to 0.9550 p.u., as mentioned above.

This improvement is a result of the optimal location and capacity obtained for the three used
PV-based DGs. In general, AIW-PSO and EIW-PSO algorithms gave better results compared to
other algorithms in improving the whole voltage profile. This does not prevent saying that other
algorithms have also shown a good improvement in some buses.

For example, the CDIW-PSO algorithm enforced the maximum voltages on buses 95 to 105.
It is also observed that the RIW-PSO algorithm gives reduced voltages on the first 60 buses,
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where an observable difference between this algorithm and other algorithms can be detected in
this range of buses.

This is due to the minimum size of PV-DG connected to bus number 40, which is only
1.3349 MW. This value could be seen as low compared to other algorithms which inject high
power near to bus 40.

Figure 7 shows the P; ., of each branch while using various PSO algorithms, before and after
the incorporation of PV-DGs into the two test systems. From Figure 7 (a), it can be noted that
there is a minimization in the power losses in all branches while using various PSO algorithms.
Also there is a similarity in the branches between 27 to 52 which have the minimum Py, it is
noted that these branches are less affected by the integration of PV-DGs.

However, the P;, reduction in other system branches is quite significant (but it is not the
same for all algorithms) for example, in branch 6, the NLI-PSO and the DW-PSO have resulted
in a minimum and maximum Py ¢, of 8.8 kW and 11.5 kW, respectively.

In addition, the peak P; . is slightly minimized by DW-PSO compared to the other algo-
rithms which have a better reduction part.

Further analysis of Figure 7 (b) shows that there are numerous branches which have a high
Py s> mostly the branches between 1 to 20, and 40 to 67. These have more than 10 kW of P ...
The maximum P; . is about 27 kW, which is associated with the first branch.

The integration of PV-DGs contributes to minimizing the losses in the first branch to less
than 13 kW and if we take a look at the best value for this branch, it is minimized to about 8 kW,
which is the minimum value obtained in the case of using several PSO algorithms.

The losses in other branches have been minimized and each algorithm has a different effect
on these branches according to the locations of buses and the injected power. For example,
the CDIW-PSO algorithm gives the minimum P; . in some branches, which are numbers 18,
68 and 74.

Figure 8 shows the boxplot of MOF while using different PSO algorithms for the IEEE 69-
bus, and the practical RDS of Adrar City. As shown in Figure 8, for the same parameters (number
of iterations and population size), the outcomes of various IW-PSO after 20 iterations show that
the performances obtained by most of the algorithms are close to each other, except for ATW-P-
SO and DW-PSO. EIW-PSO gives the best results of MOF in this case study.

Figure 9 represents the five levels of MOF (VDL, EPRL, NSL and SCL) values using various
PSO algorithms applied in this paper.

For the IEEE 69-bus RDS, Basic PSO gives the maximum results of VDL and SCL, which
are 64.5688%, and 1.2175% respectively, but it enforces the worst EPRL value. Nevertheless,
the DW-PSO recorded the maximum EPRL with 35.6788%, it also has the lowest VDL and SCL
compared to other algorithms.

Moreover, the EIW-PSO record the maximum value of APLL with 75.8359% whereas the
worst value is obtained by DW-PSO, similarly for the NSL level, where the EIW-PSO recorded
the best results.

For the practical Adrar city, the results of VDL are closer to each other with a difference of
1.5410%; however, the maximum VDL value has been obtained by the EIW-PSO algorithm.
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Meanwhile, this algorithm encounters the maximum SCL value compared to the rest of the al-
gorithms applied.

The maximum amount of EPRL has been obtained by the Basic PSO, in addition, the EIW
-PSO record the best results of APLL and NSL. It is noted that not a single algorithm has given
the best results for all level values.
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4. Benchmarking and comparison

Table 3 and Figure 10 present a comparison between the proposed EIW-PSO algorithm and
other optimization algorithms in terms of achieving minimum active power losses.

These algorithms are artificial bee colony (ABC), PSO, improved sine-cosine algorithm
(ISCA), invasive weed optimization (IWO), intelligent water drop (IWD), teaching learning
based optimization (TLBO), and quasi-oppositional differential evolution Lévy flights algorithm
(QODELFA) for standard IEEE 69-bus system.

As depicted from Table 3, there is a clear superiority of the ETW-PSO algorithm compared to
other algorithms whose results are available in literature, due to obtaining the optimal sizing and
placement of multiple DGs.
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TaBLE 3. Comparison of results for various optimization algorithms

TABELA 3. Poréwnanie wynikéw dla roznych algorytmoéw optymalizacji

DG [MW] Total DG

(Location) Size [MW]
1.6530 (63)
ABC (Dogan et al. 2019) 0.1210 (64) 1.8320 86.61 61.4977
0.0580 (65)

0.9925 (17)
PSO (Moradi et al. 2012) 1.1998 (61) 2.9879 83.20 63.0136
0.7956 (63)

0.7604 (12)
ISCA (Raut et al. 2020) 0.7604 (63) 2.2812 77.40 65.5920
0.7604 (63)

0.2381(27)
IWO (Prabha et al. 2016) 1.3266(61) 1.9981 74.59 66.8412
0.4334(65)

2.9990 (17)
IWD (Prabha et al. 2015) 1.3200 (60) 4.7578 73.55 67.3035
0.4388 (63)

0.5919 (15)
TLBO (Sultana et al. 2014) 0.8188 (61) 2.3110 72.40 67.8147
0.9003 (63)

0.6294 (11)
QODELFA (Jamil Mahfoud et al. 2019) 0.4386 (20) 3.0217 72.29 67.8636
1.9537 (61)

0.3539 (18)
Proposed EIW-PSO 0.1179 (24) 2.2264 71.67 68.1393
1.7546 (61)

Applied Technique Poss [kW] A Py [70]

This has reduced Py, to 71.67 kW, which represents the lowest power loss value compared
to other algorithms, which gave 86.61, 83.20, 77.40, 74.59, 73.55, 72.40, and 72.29 kW for the
ABC, PSO, ISCA, IWO, IWD, TLBO, QODELFA algorithms, respectively.

From Figure 10, it is noticed that the EIW-PSO also achieved the best AP, compared to
other algorithms, especially the ABC algorithm which has shown a significant difference in the
amount of AP; .., which is 6.6416%.

On the other hand, the comparison of the proposed EIW-PSO with TLBO, and QODELFA
algorithms, indicate that they are very close to each other in terms of achieving the maximum
AP} s With minor differences of 0.3246%, and 0.2757%, respectively.

81



88 T T T T T 69

—
z &

&
= o
wl O
wl -
3 o
o 4

ABC PSO ISCA WO WD TLBOQ ODELFA EIW-PSO

Fig. 10. Graphical comparison among various optimization algorithms

Rys. 10. Graficzne poréwnanie réznych algorytméw optymalizacji

Conclusions

In this paper, a comparison among a set of PSO-based algorithms with different inertia we-
ights (constant, random, time-varying and adaptive inertia weights) has been investigated to
identify the optimal location and capacity of three PV-based DG units, connected to the IEEE
69-bus RDS, and the practical 205-bus RDS, in Adrar City, Algeria.

The incorporation of multiple units reduces the total active power losses, where the P; . are
minimized from 210.9875 kW to 71.6766 kW, and form 539.7834 kW to 206.7219 kW, respec-
tively, for the standard IEEE 69-bus, and the practical Algerian 205-bus. This incorporation also
contributes to improving the voltage profiles, such that all the voltages of buses have become
within limits.

The proposed PSO-based algorithms with different inertia weights are used to maximize the
NSL, VDL, APLL, EPRL, and SCL. In addition, the inertia weight has a direct influence on the
rapidity of the convergence, where lower values of inertia weight lead to faster responses; as gi-
ven by DW-PSO algorithm.

Nevertheless, this does not imply that accurate results come with lower inertia weight. On the
contrary, more accurate results have come with slow convergence, as in case of using EIW-PSO
algorithm.
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Given results prove the efficiency of EIW-PSO by reducing the power losses, and improving
the voltage profiles; furthermore, results prove the accuracy and the superiority of the EIW-PSO
algorithm to determine the optimal allocation of DG by comparing with other algorithms in the
literature, also we can deduce that EIW-PSO can simply be applied to practical and large-scale
RDS.

The renewable-based DG might be used on a stand-alone basis or as part of a microgrid to
power residential, commercial, or industrial structures. The integration of DG units with the
electric utility’s medium-voltage distribution networks may assist and support the delivery of
clean, dependable power to more consumers while also reducing losses.

Additional advantages linked to climate resiliency and carbon emission mitigation may be
realized when significant DG capacity is derived from renewable resources. Furthermore, private
clients or institutions can directly use DG capacity for the energy grid, allowing them to have
roles for controlling carbon emissions and system resiliency.
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Zwiekszenie efektywnosci energetycznej dla optymalnej
integracji wielu fotowoltaicznych generatoréw rozproszonych
przy uzyciu strategii kontroli masy bezwtadnosci
w algorytmach PSO

Streszczenie

Ostatnio zainteresowanie wlaczeniem generatorow rozproszonych do sieci dystrybucji energii elek-
trycznej znacznie wzrosto na catym $wiecie ze wzgledu na postep technologiczny, ktory doprowadzit do
obnizenia kosztow energii elektrycznej, zmniejszenia strat mocy, zwickszenia niezawodnos$ci systemu
elektroenergetycznego i poprawy profilu napigcia. Korzysci te mozna zmaksymalizowad, jesli opracuje si¢
i zaprojektuje optymalng alokacj¢ i wielko$¢ generatorow rozproszonych w promieniowym systemie dys-
trybucji. Uzyskanie optymalnej lokalizacji i wielkosci jednostek generatoréw rozproszonych, ktére maja
by¢ zainstalowane w istniejacym promieniowym systemie dystrybucji, zalezy od r6znych ograniczen, ktore
czasami nakladaja si¢ lub sa sprzeczne. Aby poradzi¢ sobie z ograniczeniami i uzyskaé optymalna lokali-
zacje i rozmiar generatora rozproszonego, w ostatniej dekadzie czgsto opracowywano metaheurystyczne
algorytmy wyszukiwania i optymalizacji. W niniejszym artykule zaproponowano skuteczna technike opty-
malizacji, aby przydzieli¢ wiele jednostek generatoré6w rozproszonych do promieniowego systemu dystry-
bucji. Zaproponowana metoda optymalizacji uwzglednia integracje jednostek generatorow rozproszonych
opartych na ogniwach fotowoltaicznych w sieciach dystrybucji energii. Opiera si¢ na funkcji wielokryte-
rialnej, ktora ma na celu maksymalizacj¢ poziomu oszczednosci netto, poziomu odchylenia napigcia, po-
ziomu utraty mocy czynnej, poziomu redukcji zanieczyszczenia srodowiska i poziomu zwarcia. Zapropo-
nowane algorytmy wykorzystujace rozne strategie optymalizacji roju czastek o masie bezwtadnosci (PSO)
sg stosowane w standardowym systemie IEEE 69-autobus oraz w rzeczywistym algierskim systemie dys-
trybucji autobusu 205. Proponowane podejscie i projekt tak skomplikowanych, wielozadaniowych funkcji
ma ostatecznie doprowadzi¢ do znacznej poprawy technicznych, ekonomicznych i srodowiskowych aspek-
tow sieci dystrybucyjnych. Stwierdzono, ze algorytm EIW-PSO jest najlepszy do zastosowania w systemie
testowym IEEE 69-bus, poniewaz osigga maksymalne cele dla réznych wielkosci: 75,8359%, 28,9642%
164,2829% odpowiednio dla utraty mocy czynnej, poziomu redukcji zanieczyszczenia srodowiska i pozio-
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mu odchylenia napigcia w procesie instalacji jednostek rozproszonych. Dla tej samej liczby generatorow
rozproszonych, EIW-PSO zapewnia znacznie lepsza wydajnos¢ w testach autobuséw 205 w miescie Ad-
rar; liczbowo: 72,3080%, 22,2027% i 63,6963% odpowiednio dla utraty mocy czynnej, poziomu redukcji
zanieczyszczenia srodowiska 1 poziomu odchylenia napig¢cia. Wyniki symulacji tego badania dowodza, ze
zaproponowane algorytmy wykazuja wigksza zdolnos¢ i skuteczno$¢ w ustalaniu optymalnych ustawien
generatordw rozproszonych.

SLOWA KLUCZOWE: generacja rozproszona oparta na OZE, maksymalizacja efektywnosci energetycznej,
poziomy techniczno-ekonomiczno-§rodowiskowe, optymalizacja roju czastek (PSO), strategie
masy bezwladnosci, promieniowy system dystrybucji






