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Enhancing energy efficiency for optimal multiple 
photovoltaic distributed generators integration using 
inertia weight control strategies in PSO algorithms

Abstract: Recently, interest in incorporating distributed generators (DGs) into electrical distribution ne-
tworks has significantly increased throughout the globe due to the technological advancements that 
have led to lowering the cost of electricity, reducing power losses, enhancing power system relia-
bility, and improving the voltage profile. These benefits can be maximized if the optimal allocation 
and sizing of DGs into a radial distribution system (RDS) are properly designed and developed. 
Getting the optimal location and size of DG units to be installed into an existing RDS depends 
on the various constraints, which are sometimes overlapping or contradicting. In the last decade, 
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meta-heuristic search and optimization algorithms have been frequently developed to handle the 
constraints and obtain the optimal DG location and size. This paper proposes an efficient optimi-
zation technique to optimally allocate multiple DG units into a RDS. The proposed optimization 
method considers  the integration of solar photovoltaic (PV) based DG units in power distribution 
networks. It is based on multi-objective function (MOF) that aims to maximize the net saving level 
(NSL), voltage deviation level (VDL), active power loss level (APLL), environmental pollution 
reduction level (EPRL), and short circuit level (SCL). The proposed algorithms using various stra-
tegies of inertia weight particle swarm optimization (PSO) are applied on the standard IEEE 69-bus 
system and a real 205-bus Algerian distribution system. The proposed approach and design of such 
a complicated multi-objective functions are ultimately to make considerable improvements in the 
technical, economic, and environmental aspects of power distribution networks. It was found that 
EIW-PSO is the best applied algorithm as it achieves the maximum targets on various quantities; 
it gives 75.8359%, 28.9642%, and 64.2829% for the APLL, EPRL, and VDL, respectively, with 
DG units’ installation in the IEEE 69-bus test system. For the same number of DG units, EIW-PSO 
gives remarkable improved performance with the Adrar City 205-bus test system; numerically, 
it shows 72.3080%, 22.2027%, and 63.6963% for the APLL, EPRL, and VDL, respectively. The 
simulation results of this study prove that the proposed algorithms exhibit higher capability and 
efficiency in fixing the optimum DG settings.

Keywords: renewable-based distributed generation, maximization of energy efficiency, techno-economic
-environmental levels, particle swarm optimization (PSO), inertia weight strategies,
radial distribution system

Nomenclature

PLoss, QLoss Total active and reactive power losses
Pij, Qi Active and reactive power between branch i, j
Pi, Qi Active and reactive power at bus i
Nbus Number of buses in the network
Rij, Xij Reactance and resistance of the line ij
Zij Impedance of the distribution line ij
Sij Apparent power between branch
Smax Maximum limits of apparent power
Vi, δi Voltage magnitude and angle at bus i
PG, QG Powers injected by substation
PD, QD Powers of load demand 
PDG Active power delivered by PV-DG unit
Vmin, Vmax Allowable limits of voltages
ΔVmax Upper limits of voltage drop at each branch 
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nPV-DG, i Location of PV-DG units at bus i
NPV-DG.max Maximum number of PV-DG units
NPV-DG Number of PV-DG units
PV-DGPosition Position of PV-DG unit
T Equal to 8760 hours per year
Kp Incremental cost of PLoss, equal to 0.06 ($/kW)
EGg Emission quantity of a generator pollutant
AEg Emission quantity of substation
c1, c2 Acceleration coefficient factors
wmax, wmin Maximum and minimum values of the w
k, kmax Current and maximum number of iterations
r1, r2 Random values between 0 and 1

Introduction

The optimal DG incorporation into electrical distribution networks provides many technical 
and economic benefits, such as: reduction in power loss, reduction in energy purchase from the 
grid, improved bus voltage, and enhanced system stability and reliability (Bayod-Rújula 2009; 
El-Khattam et al. 2004). 

Identifying the optimum DG location is, in general, a complex non-linear optimization pro-
blem. The literature in this research area can be divided into several categories based on the 
considered constraints, objectives, and solution algorithms (Mahmoud Pesaran et al. 2017). 

There are numerous objective functions formulated to determine the optimal locations and 
sizes of DG units. Some of these significant objective functions include the minimization of the 
following factors: loss sensitive factor for finding the weak buses, in addition to the main objecti-
ve of reducing the active power losses (Yang et al. 2018). Other methods incorporated an applied 
moth-flame optimization (MFO) algorithm, which is based on the minimization of active power 
loss (Settoul et al. 2019a). Minimization of active and reactive power losses in RDS using an 
analytic method was also performed (Naik et al. 2015). A single objective based on the minimi-
zation of power and energy losses by using a genetic algorithm have been presented (Hassan et 
al. 2017). An implanted MFO algorithm to reduce active power loss and Voltage Stability Index 
(VSI) considering various renewable energy-based DG units have been addressed (Settoul et al. 
2019b). An applied teaching-learning-based optimization technique to minimize voltage devia-
tion, active power loss, and the maximization of VSI has been published (Quadr et al. 2019). 
The authors in (Hassan et al. 2019) proposed a multi-verse optimizer algorithm to minimize 
three indices, which are the annual losses cost, total voltage variation, and apparent power loss. 
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A mixed-integer linear programming model was proposed to find the optimal short-term plan of 
RDS considering siting of DG sources and voltage regulators allocation to minimize the energy 
cost supplied (Dominguez et al. 2019). 

A multi-objective PSO based on the minimization of he total operational cost and risk factor 
has been presented (Ganguly et al. 2013). An optimal power factor of DG has been used for 
minimization power losses, total cost and carbon emissions (Hung et al. 2014). A sine-cosine 
algorithm based was deployed for minimizing the total power losses, total voltage deviation, and 
VSI considering four typical days of the four seasons in the year (Selim et al. 2020). The mini-
mization of active power loss, total harmonic distortion (THD), and the total cost of DG units by 
considering different types of loads was presented (Fard et al. 2018).

Practically, most of these operational objectives are inherently inconsistent and conflict 
with each other. Hence, the problem of allocating DGs in RDS becomes a complex multi-ob-
jective function (MOF) problem since it is quite hard to simultaneously optimize multiple 
conflicting objectives. Finding the best compromise among all the objectives is also difficult 
since the optimization algorithms are typically designed to fulfill a single objective (Saha et 
al. 2019). 

This paper addresses the optimal incorporation of multiple PV-based DG units in RDS using 
various inertia weight PSO Algorithms. This paper aims to solve the optimal allocation of DG 
problem in a RDS using a new optimization algorithm to reduce various technical and economic 
parameters.

In this study, the optimal deployment of renewable-based DGs was applied and tested on 
a standard IEEE 69-bus, and practical (205-bus) RDS of Adrar city, which is a system in the Al-
gerian RDS. The optimal integration is designed to maximize the following levels: NSL, VDL, 
APLL, EPRL, and SCL.

This paper comprises five sections followed by a references list, which is organized as fol-
lows: Section 2 demonstrates the problem formulation; Section 3 presented the overview of 
various inertia weight control strategies in PSO algorithms; Section 4 contains the results of the 
simulation, discussions; Section 5 presents the results of the comparisons with published papers 
in the literature; finally, the conclusions and future perspectives are addressed in Section 6.

1. Problem formulation

1.1. Multi-objective function

 The multi-objective level considered in this paper to solve the problem of finding the optimal 
size and location of PV-DG, planning by giving a specified weight for each level can be formu-
lated as follows:
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	 ( )1 , 2 , 3 4 , 5
1 2

. . . . .
Bus BusN N

i j i j j i j G
i j

MOF Max APLL SCL VDL NSL EPRL
= =

= + + + +∑∑ α α α α α � (1)

where:
α1, α2, α3, α4 and α5 	–	 the weighting factors. The choice of the weighting factors are depen- 

							       ding on the importance of each objective function, in several re- 
							       search and practical factors.

In this paper, due to the importance of the reduction of power loss for the reliability of the 
system and for its direct influence on minimizing the cost, so due to these two advantages α1 is 
taken as 0.30, in addition, for the technical reason α2, α3 and α4 are taken as 0.20, and finally, α5 
is taken as 0.10. The proposed levels can be given as:

The first level is the active power loss (APLL), which can be represented as follows (Lasmari 
et al. 2020a):

	 100
Before DG

Loss
Before DG After DG

Loss Loss

P
APLL

P P
= ×

+
� (2)

where:
PLoss, can be given as (Belbachir et al. 2021):

	 ( )2 2

2
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The second level is the voltage deviation (VDL), which can be expressed as follows (Ameli 
et al. 2014):

	 100Before DG

Before DG After DG

VD
VDL

VD VD
= ×

+
� (4)

where

	 1 jVD V= − � (5)

The expression of the short circuit level (SCL) can be calculated as per the equation below 
(Parizad et al. 2018):

	 100After DG Before DG

Before DG

SC SC
SCL

SC
−

= × � (6)
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where

	
j

ij

V
SC

Z
= � (7)

The fourth level is the net saving level (NSL) which can be express as follows:

	  100  Before DG After DG

Before DG

ALC ALC
NSL

ALC
−

= × � (8)

The annual losses cost (ALC), can be calculated as (Hassan et al. 2019):

	 Loss PALC P K T= × × � (9) 

Finally, the environmental pollution reduction level (EPRL) can be expressed as:

	 100After DG

Before DG After DG

PE
EPRL

PE PE
= ×

+
� (10)

where:
PE	–	 Pollution of Emissions, which can be expressed as (Chiradeja et la. 2004):  

	 .g gPE EG AE= � (11)

1.2. Power Balance Constraint

The power balance equations can be formulated as below (Hung et al. 2014):

	 G DG D LossP P P P+ = + � (12)

	 G D LossQ Q Q= + � (13)
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1.3. Distribution Line Constraints

The inequality constraint of the line can be expressed as follows:

	 maxijS S≤ � (14)

	 min maxiV V V≤ ≤ � (15)

	 1 maxjV V V− ≤ ∆ � (16)

1.4. The constraints related to PV-based DGs 

The inequality constraint of PV-DG can be expressed as follows (Zellagui et al. 2021):

	 min max
DG DG DGP P P≤ ≤ � (17)

	 2 Position BusDG N≤ ≤ � (18)

	 .maxDG DGN N≤ � (19)

	 , / 1DG in Location ≤ � (20)

2. An overview of IW control strategies in PSO algorithms

The basic PSO algorithm was first proposed in 1995 as a population-based stochastic optimi-
zation algorithm, which can be seen as a global search technique. The population of individuals 
(P) or swarm evolves through successive iterations. At each iteration k, each particle is moved 
according to the equations (Kennedy et al. 1995):
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1 1 2 2

k k k k k k
i i best i best iV w V c r P X c r G X+    = × + × × − + × × −    � (21)

	 1 1k k k
i i iX X V+ += + � (22)

Inertia weight w is an important parameter in the PSO algorithm, which was originally pro-
posed (Parizad et al. 2018) which has a critical role for the guaranteed efficiency of PSO. Since 
the introduction of this parameter, there has been a number of proposals of different strategies to 
determine the value of w during a course of run (varied for each iteration and execution).

To suggest an appropriate strategy for a user of PSO involving w, comprehensive studies 
have been performed in this paper using nine different w-related strategies, namely adaptive 
inertia weight (AIW-PSO), inertia weight with Butterworth (B-PSO), chaotic decreasing inertia 
weight (CDIW-PSO), decreasing inertia weight with non-linear coefficient (DW), exponential 
inertia weight (EIW-PSO), nonlinear inertia weight variation for dynamic adaptation (NLDA), 
nonlinear improved inertia weight (NLI), oscillating inertia weight (OIW), and random inertia 
weight (RIW) are shown in Table 1.

Table 1. Various inertia weight strategies of PSO algorithms

Tabela 1. Różne warianty wag bezwładności algorytmów PSO

No. Algorithm Reference Formula of Inertia Weight Value

1 2 3 4 5

1 AIW-PSO (Nickabadi et 
al. 2011) min max min( ) ( )sw w w w p k= + − ⋅ wmin = 0.4

wmax = 0.9

2 B-PSO (Zhu et al. 
2018) 2

max min

1

1

1
pw w w

k
p

 
 
 

= ⋅ ⋅ 
  
+   
  

P1 = kmax/3
P2 = 10

3 CDIW-PSO (Feng et al. 
2017)

max

maxmin max min( )

k k
k

kw z w w w

−

= ⋅ + −
wmin = 0.4
wmax = 0.9

4 DW-PSO (Fan et al. 
2007) 

2w
k

α =  
 

α = 0.3

5 EIW-PSO (Ting et al. 
2012) max0

kx
kw w e

β
 

−α  
 =

α = 2
β = 2

w0 = 0.9

6 NLDA-PSO (Chatterjee  et 
al. 2006) 

max
min max max

max
( )

n

n
k kw w w w

k

 − = ⋅ − +
 
 

n = 0.6

7 NLI-PSO (Liao et al. 
2011) max (1.0002) kw w −= ⋅ wmax = 0.9
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Different time-varying updating strategies for the inertia weight parameter in various PSO 
algorithms are traced in Figure 1. As shown in Figure 1, there is a variation of inertia weight with 
iterations. In general, this variation spans between 0.4 and 0.9. 

The inertia weight of the DW-PSO algorithm decreases quickly compared to other algo-
rithms, which signifies a rapid convergence. Nevertheless, the efficiency and accuracy indices of 
these algorithms for the optimal DG location and size will be verified in the next section.

The flowchart of the PSO algorithm is shown in Figure 2.

1. 2 3 4 5

8 OIW-PSO (Kentzoglana-
kis  et al. 2009)

min min

min

2 (4 6)cos
2 2

k kw w k k
T

if k
w

otherwise
w

+ϖ ϖ + π + +    
 < γ=  






T = 2×γ/17
γ = 3×kmax/4

9 RIW-PSO (Eberhart et al. 
2001) 

0.5
2

w α
= + α = random [0 1]

 
 

Fig. 1. Inertia weight variation for different PSO algorithms

Rys. 1. Zmienność masy bezwładności dla różnych algorytmów PSO
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3. Testing systems, results and discussions

To evaluate the efficiency and the accuracy of the proposed IW-PSO algorithms, the IEEE-69 
bus and the practical Adrar city (Algeria) RDS are considered for testing. The first test system 
consists of 69 buses with total active and reactive load of 3,791.9 kW and 2,694.1 kVar, respec-
tively as shown in Figure 3 (Naik et al. 2015). 

The second test system is the practical Algerian RDS which compose of 205-bus, also this 
system has four principal deviations, with total active and reactive load of 7,839.7 kW and 
5,594.0 kVar, respectively, as represented in Figure 4 (Lasmari et al. 2020b).

 
 

Fig. 2. Flowchart of IW-PSO algorithms

Rys. 2. Schemat blokowy algorytmów IW-PSO
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Fig. 3. Single line diagram of the IEEE 69-bus RDS

Rys. 3. Schemat pojedynczej linii IEEE 69-bus w promieniowym systemie dystrybucji

 

 Fig. 4. Single line diagram of practical RDS in Adrar City 205-bus

Rys. 4. Schemat pojedynczej linii rzeczywistego promieniowego systemu dystrybucji dla autobusu 205 
w mieście Adrar
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The convergence characteristics of the proposed PSO algorithms for the optimal integration 
of multiple PV-based DG units in the two RDS test systems is illustrated in Figure 5.

 
(a) 

 
(b) 

 Fig. 5. Convergence characteristics of IW-PSO algorithms: a) IEEE 69-bus, b) Adrar City 205-bus

Rys. 5. Charakterystyki zbieżności algorytmów IW-PSO: a) Magistrala IEEE 69, b) Miasto Adrar autobus 205
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Figure 5 shows the results obtained when applying the proposed IW-PSO algorithms to both 
testing systems. It is clear that each algorithm has a different number of iterations to reach the 
optimal solution, where the OIW-PSO, CDIW-PSO DW-PSO converge rapidly with less than 
80 iterations. In fact, the DW-PSO algorithm converges the quickest compared to other algo-
rithms, taking less than fifty iterations, and having the least value of MOF. On the other hand, 
other algorithms take more than eighty iterations to converge. 

In the other extreme, EIW-PSO recorded the maximum value of MOF, which are 52.0079%, 
and 50.7391%, respectively, for the first and the second test systems, and it takes more than 
110 iterations to attain the optimal solution. 

Also, it can be observed that some algorithms such as AIW-PSO converge rapidly in the 
two test systems considered in this paper. In addition, the results of 20 runs of each algo-
rithm prove the superiority of EIW-PSO results that are closer to each other compared to 
other algorithms.

The optimization results of multiple PV-DGs using different PSO algorithms for the two test 
systems are tabulated in Table 2.

Table 2. Comparison of optimization results for all test systems

Tabela 2. Porównanie wyników optymalizacji dla wszystkich systemów testowych

(a) IEEE 69-bus

Methods Size [MW]
(location)

PLoss
[kW]

QLoss
[kVar]

Vmin
[p.u.]

APLL
[%]

EPRL
[%]

SCL
[%]

NSL
[%]

VDL
[%]

MOF
[%]

1 2 3 4 5 6 7 8 9 10 11

Basic PSO
0.7448 (14)
0.0100 (22)
1.7852 (62)

74.2008 36.8281 0.9814 75.1960 24.8270 1.2175 67.0142 64.5688 51.2487

AIW-PSO
0.6220 (15)
0.0100 (44)
1.7142 (61)

72.0575 36.0130 0.9771 75.7387 27.4309 1.1625 67.9670 64.5359 51.8462

B-PSO
0.4293 (27)
0.0100 (59)
1.6926 (62)

75.4966 37.6329 0.9765 74.8717 30.1786 1.0336 66.4382 64.1006 51.4363

CDIW-PSO
0.3649 (22)
0.1056 (24)
1.7164 (61)

72.3221 36.2927 0.9763 75.6713 29.4651 1.0653 67.8494 64.2804 51.9340

DW-PSO
0.3640 (23)
0.1056 (60)
1.1782 (61)

83.2038 41.3421 0.9601 72.9991 35.6788 0.8209 63.0120 62.2618 51.6269

EIW-PSO
0.3539 (18)
0.1179 (24)
1.7546 (61)

71.6766 36.0317 0.9777 75.8359 28.9642 1.0617 68.1364 64.2829 52.0079

NLDA- 
-PSO

0.3437 (21)
0.0100 (27)
1.7565 (61)

73.0965 36.6685 0.9770 75.4746 30.4122 0.9484 67.5052 63.7757 51.7880
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1 2 3 4 5 6 7 8 9 10 11

NLI-PSO
0.4748 (18)
0.5053 (54)
1.5795 (63)

73.2179 36.7348 0.9781 75.4439 24.5360 1.1339 67.4512 64.3341 51.3175

OIW-PSO
0.4687 (18)
0.0390 (27)
1.7077 (61)

71.7828 36.0669 0.9763 75.8088 29.0270 1.0889 68.0891 64.3463 51.9982

RIW-PSO
0.2948 (24)
1.0660 (61)
0.7260 (63)

74.1418 37.0898 0.9790 75.2109 30.7058 0.8957 67.0405 63.4440 51.5535

(b) Adrar City 205-bus

Methods Size [MW]
(location)

PLoss
[kW]

QLoss
[kVar]

Vmin
[p.u.]

APLL
[%]

EPRL
[%]

SCL
[%]

NSL
[%]

VDL
[%]

MOF
[%]

Basic PSO
2.1674 (33)
1.8016 (73)
0.0100 (111)

232.6199 164.6921 0.9546 69.8836 32.8278 6.7016 56.9050 62.1553 49.4962

AIW-PSO
2.2809 (31)
2.0913 (76)
0.3471 (166)

223.8668 154.9193 0.9538 70.6846 28.5343 7.7411 58.5265 62.8593 50.0137

B-PSO
1.7151 (37)
2.1740 (72)
0.3575 (168)

221.4880 153.1897 0.9512 70.9055 31.2916 7.1811 58.9672 62.6644 50.2743

CDIW-PSO
2.0219 (33)
1.1910 (64)
1.2215 (77)

221.5178 157.5614 0.9512 70.9027 30.2171 7.4423 58.9617 62.5166 50.1961

DW-PSO
1.9976 (34)
2.0605 (75)
0.3759 (168)

219.9361 151.9497 0.9530 71.0504 30.2098 7.3810 59.2547 62.8565 50.3520

EIW-PSO
2.1439 (33)
2.3029 (72)
1.2091 (182)

206.7219 138.9249 0.9550 72.3080 22.2027 8.0329 61.7028 63.6963 50.7391

NLDA-PSO
2.1202 (33)
1.1435 (77)
0.9816 (107)

226.8493 160.8734 0.9542 70.4096 31.3295 7.4659 57.9740 62.4923 49.9625

NLI-PSO
1.9929 (35)
1.7575 (72)
0.2523 (116)

229.6264 162.3535 0.9543 70.1555 32.6837 6.8784 57.4595 62.2802 49.7399

OIW-PSO
1.9775 (35)
1.7744 (74)
0.7181 (182)

214.1975 145.8112 0.9538 71.5911 29.9660 6.7969 60.3179 62.7793 50.5517

RIW-PSO
1.3349 (40)
2.1153 (72)

2.1632 (159)
226.0159 156.4488 0.9456 70.4863 22.6450 7.1540 58.1284 62.8033 49.1375
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For both test systems, the results of optimization in Table 2 show that the incorporation of 
PV-DGs has a clear effect on all of the study levels, and this observation is valid for all the algo-
rithms used in this study. 

A quick glance shows that the performances of all algorithms are quite close to each other. 
For the 69-bus IEEE system, it is observed that the EIW exhibit the best results of MOF. 

Great improvements in all indices were attained when buses 18, 24 and 61 were selected for 
DGs emplacement with sizes of 0.3539, 0.1179, and 1.7546 MW respectively.  

This DG setup reduces the active power losses with up to 68.1363%. In another angle, APLL, 
NSL, VDL, and SCL are maximized to 75.8359, 68.1364, 64.2829, and 1.0617%, respectively. 

By taking a deep look into the results of Adrar city, it turns out that the EIW-PSO algorithm 
offers the best results of MOF and chooses buses 33, 72, and 182 as the optimal placements for 
PV-DGs integration with a total size of 5.6559 MW.

It is observed that the EIW-PSO showed the best results of all indices, except for the EPRL, 
and this is due to the minimization of PLoss to 206.7219 kW. Concerning the APLL and NSL, 
they are maximized to 72.3080% and 61.7028%, respectively. 

It is also noticed that SCL and VDL were maximized to 8.0329% and 63.6963% respectively.  
The maximum EPRL, obtained by the basic PSO, is 32.8278%. Furthermore, the voltage profile 
is improved, and the lowest bus voltage has been  pulled up from 0.8825 to 0.9550 p.u.

Figure 6 shows the voltage profiles, before and after the integration of three DG units into the 
IEEE 69-bus and Adrar City test systems. 

The merit of integrating three PV-DGs, demonstrated in enhancing the voltage profiles of all 
buses, is shown in Figure 6, where different voltage profiles are traced according to the algorithm 
in use. 

In fact, the obtained results reflect the impact of PV-DGs in improving the voltage profiles in 
large RDS. For the IEEE69-bus RDS, the voltage profiles of bus groups 1–7 & 28–50 are quite 
similar for all algorithms. On the other hand, for the rest of buses, there is noticeable variations 
in the voltage profiles. 

Among the studied algorithms, the basic PSO recorded the maximum voltage, which re-
commends the optimal location and the largest total size of the PV-DGs (2.54 MW). The worst 
voltage profiles are obtained by the DW-PSO in all buses as it recommends the lowest size of 
PV-DGs. The minimum bus voltage is 0.9601 p.u., marked on bus 65.

Following this PV-DG integration, the lowest voltage, which equals 0.9456 p.u., is obtained 
in the case of applying the RIW-PSO algorithm, while other algorithms have improved bus 
voltage values to be greater than 0.95 p.u. The maximum voltage is recorded when applying 
EIW-PSO as it is pulled up to 0.9550 p.u., as mentioned above. 

This improvement is a result of the optimal location and capacity obtained for the three used 
PV-based DGs. In general, AIW-PSO and EIW-PSO algorithms gave better results compared to 
other algorithms in improving the whole voltage profile. This does not prevent saying that other 
algorithms have also shown a good improvement in some buses.

For example, the CDIW-PSO algorithm enforced the maximum voltages on buses 95 to 105. 
It is also observed that the RIW-PSO algorithm gives reduced voltages on the first 60 buses, 
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Before PV-DG installation  

  
After PV-DG installation  

    
           (a) 

 Fig. 6. Bus voltages of standard and practical RDS: a) IEEE 69-bus

Rys. 6. Napięcia magistrali standardowego i faktycznego promieniowego systemu dystrybucji: 
a) Magistrala IEEE 69,
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Before PV-DG installation  

     
 

After PV-DG installation  

    
              (b) 

Fig. 6 cont. Bus voltages of standard and practical RDS: b) Adrar City 205-bus

Rys. 6 cd. Napięcia magistrali standardowego i faktycznego promieniowego systemu dystrybucji: 
b) Autobus 205 z miasta Adrar
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where an observable difference between this algorithm and other algorithms can be detected in 
this range of buses. 

This is due to the minimum size of PV-DG connected to bus number 40, which is only 
1.3349 MW. This value could be seen as low compared to other algorithms which inject high 
power near to bus 40.

Figure 7 shows the PLoss of each branch while using various PSO algorithms, before and after 
the incorporation of PV-DGs into the two test systems. From Figure 7 (a), it can be noted that 
there is a minimization in the power losses in all branches while using various PSO algorithms. 
Also there is a similarity in the branches between 27 to 52 which have the minimum PLoss, it is 
noted that these branches are less affected by the integration of PV-DGs.

However, the PLoss reduction in other system branches is quite significant (but it is not the 
same for all algorithms) for example, in branch 6, the NLI-PSO and the DW-PSO have resulted 
in a minimum and maximum PLoss of 8.8 kW and 11.5 kW, respectively. 

In addition, the peak PLoss is slightly minimized by DW-PSO compared to the other algo-
rithms which have a better reduction part. 

Further analysis of Figure 7 (b) shows that there are numerous branches which have a high 
PLoss, mostly the branches between 1 to 20, and 40 to 67. These have more than 10 kW of PLoss. 
The maximum PLoss is about 27 kW, which is associated with the first branch.

The integration of PV-DGs contributes to minimizing the losses in the first branch to less 
than 13 kW and if we take a look at the best value for this branch, it is minimized to about 8 kW, 
which is the minimum value obtained in the case of using several PSO algorithms. 

The losses in other branches have been minimized and each algorithm has a different effect 
on these branches according to the locations of buses and the injected power. For example, 
the CDIW-PSO algorithm gives the minimum PLoss in some branches, which are numbers 18, 
68 and 74.

Figure 8 shows the boxplot of MOF while using different PSO algorithms for the IEEE 69-
bus, and the practical RDS of Adrar City. As shown in Figure 8, for the same parameters (number 
of iterations and population size), the outcomes of various IW-PSO after 20 iterations show that 
the performances obtained by most of the algorithms are close to each other, except for AIW-P-
SO and DW-PSO. EIW-PSO gives the best results of MOF in this case study.

Figure 9 represents the five levels of MOF (VDL, EPRL, NSL and SCL) values using various 
PSO algorithms applied in this paper. 

For the IEEE 69-bus RDS, Basic PSO gives the maximum results of VDL and SCL, which 
are 64.5688%, and 1.2175% respectively, but it enforces the worst EPRL value. Nevertheless, 
the DW-PSO recorded the maximum EPRL with 35.6788%, it also has the lowest VDL and SCL 
compared to other algorithms. 

Moreover, the EIW-PSO record the maximum value of APLL with 75.8359% whereas the 
worst value is obtained by DW-PSO, similarly for the NSL level, where the EIW-PSO recorded 
the best results.

For the practical Adrar city, the results of VDL are closer to each other with a difference of 
1.5410%; however, the maximum VDL value has been obtained by the EIW-PSO algorithm. 
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Before PV-DG installation 

 
After PV-DG installation 

 
(a) 

 Fig. 7. Active power loss of RDSs: a) IEEE 69-bus

Rys. 7. Straty mocy czynnej promieniowego systemu dystrybucji a) Magistrala IEEE 69
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Fig. 7 cont. Active power loss of RDSs: b) Adrar City 205-bus

Rys. 7 cd. Straty mocy czynnej promieniowego systemu dystrybucji: b) Autobus 205 z miasta Adrar

Before PV-DG installation 

 
After PV-DG installation 

 
(b) 
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Meanwhile, this algorithm encounters the maximum SCL value compared to the rest of the al-
gorithms applied. 

The maximum amount of EPRL has been obtained by the Basic PSO, in addition, the EIW
-PSO record the best results of APLL and NSL. It is noted that not a single algorithm has given 
the best results for all level values.

 

 
(a) 

 
(b) 

 Fig. 8. Boxplot of MOF using various PSO algorithms: a) IEEE 69-bus, b) Adrar City 205-bus

Rys. 8. Wykres pudełkowy funkcji wielokryterialnej w różnych algorytmach PSO: a) Magistrala IEEE 69, 
b) Autobus 205 z miasta Adrar
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4. Benchmarking and comparison

Table 3 and Figure 10 present a comparison between the proposed EIW-PSO algorithm and 
other optimization algorithms in terms of achieving minimum active power losses. 

These algorithms are artificial bee colony (ABC), PSO, improved sine-cosine algorithm 
(ISCA), invasive weed optimization (IWO), intelligent water drop (IWD), teaching learning 
based optimization (TLBO), and quasi-oppositional differential evolution Lévy flights algorithm 
(QODELFA) for standard IEEE 69-bus system.

As depicted from Table 3, there is a clear superiority of the EIW-PSO algorithm compared to 
other algorithms whose results are available in literature, due to obtaining the optimal sizing and 
placement of multiple DGs. 

 
(a) 

 
(b) 

 Fig. 9. Comparison among various PSO algorithms: a) IEEE 69-bus, b) Adrar City 205-bus

Rys. 9. Porównanie różnych algorytmów PSO: a) Magistrala IEEE 69, b) Autobus 205 z miasta Adrar
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This has reduced PLoss to 71.67 kW, which represents the lowest power loss value compared 
to other algorithms, which gave 86.61, 83.20, 77.40, 74.59, 73.55, 72.40, and 72.29 kW for the 
ABC, PSO, ISCA, IWO, IWD, TLBO, QODELFA algorithms, respectively.

From Figure 10, it is noticed that the EIW-PSO also achieved the best ΔPLoss compared to 
other algorithms, especially the ABC algorithm which has shown a significant difference in the 
amount of ΔPLoss, which is 6.6416%.

On the other hand, the comparison of the proposed EIW-PSO with TLBO, and QODELFA 
algorithms, indicate that they are very close to each other in terms of achieving the maximum 
ΔPLoss, with minor differences of 0.3246%, and 0.2757%, respectively.

Table 3. Comparison of results for various optimization algorithms

Tabela 3. Porównanie wyników dla różnych algorytmów optymalizacji

Applied Technique DG [MW] 
(Location)

Total DG
Size [MW] PLoss [kW] Δ PLoss [%]

ABC (Dogan et al. 2019)
1.6530 (63)
0.1210 (64)
0.0580 (65)

1.8320 86.61 61.4977

PSO (Moradi et al. 2012)
0.9925 (17)
1.1998 (61)
0.7956 (63)

2.9879 83.20 63.0136

ISCA (Raut  et al. 2020)
0.7604 (12)
0.7604 (63)
0.7604 (63)

2.2812 77.40 65.5920

IWO (Prabha et al. 2016)
0.2381(27)
1.3266(61)
0.4334(65)

1.9981 74.59 66.8412

IWD (Prabha et al. 2015)
2.9990 (17)
1.3200 (60)
0.4388 (63)

4.7578 73.55 67.3035

TLBO (Sultana et al. 2014)
0.5919 (15)
0.8188 (61)
0.9003 (63)

2.3110 72.40 67.8147

QODELFA (Jamil Mahfoud et al. 2019)
0.6294 (11)
0.4386 (20)
1.9537 (61)

3.0217 72.29 67.8636

Proposed EIW-PSO
0.3539 (18)
0.1179 (24)
1.7546 (61)

2.2264 71.67 68.1393



82

Conclusions

In this paper, a comparison among a set of PSO-based algorithms with different inertia we-
ights (constant, random, time-varying and adaptive inertia weights) has been investigated to 
identify the optimal location and capacity of three PV-based DG units, connected to the IEEE 
69-bus RDS, and the practical 205-bus RDS, in Adrar City, Algeria. 

The incorporation of multiple units reduces the total active power losses, where the PLoss are 
minimized from 210.9875 kW to 71.6766 kW, and form 539.7834 kW to 206.7219 kW, respec-
tively, for the standard IEEE 69-bus, and the practical Algerian 205-bus. This incorporation also 
contributes to improving the voltage profiles, such that all the voltages of buses have become 
within limits. 

The proposed PSO-based algorithms with different inertia weights are used to maximize the 
NSL, VDL, APLL, EPRL, and SCL. In addition, the inertia weight has a direct influence on the 
rapidity of the convergence, where lower values of inertia weight lead to faster responses; as gi-
ven by DW-PSO algorithm. 

Nevertheless, this does not imply that accurate results come with lower inertia weight. On the 
contrary, more accurate results have come with slow convergence, as in case of using EIW-PSO 
algorithm. 

 
 

Fig. 10. Graphical comparison among various optimization algorithms

Rys. 10. Graficzne porównanie różnych algorytmów optymalizacji
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Given results prove the efficiency of EIW-PSO by reducing the power losses, and improving 
the voltage profiles; furthermore, results prove the accuracy and the superiority of the EIW-PSO 
algorithm to determine the optimal allocation of DG by comparing with other algorithms in the 
literature, also we can deduce that EIW-PSO can simply be applied to practical and large-scale 
RDS.

The renewable-based DG might be used on a stand-alone basis or as part of a microgrid to 
power residential, commercial, or industrial structures.  The integration of DG units with the 
electric utility’s medium-voltage distribution networks may assist and support the delivery of 
clean, dependable power to more consumers while also reducing losses.

Additional advantages linked to climate resiliency and carbon emission mitigation may be 
realized when significant DG capacity is derived from renewable resources. Furthermore, private 
clients or institutions can directly use DG capacity for the energy grid, allowing them to have 
roles for controlling carbon emissions and system resiliency.
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Zwiększenie efektywności energetycznej dla optymalnej 
integracji wielu fotowoltaicznych generatorów rozproszonych 

przy użyciu strategii kontroli masy bezwładności 
w algorytmach PSO

Streszczenie

Ostatnio zainteresowanie włączeniem generatorów rozproszonych do sieci dystrybucji energii elek-
trycznej znacznie wzrosło na całym świecie ze względu na postęp technologiczny, który doprowadził do 
obniżenia kosztów energii elektrycznej, zmniejszenia strat mocy, zwiększenia niezawodności systemu 
elektroenergetycznego i poprawy profilu napięcia. Korzyści te można zmaksymalizować, jeśli opracuje się 
i zaprojektuje optymalną alokację i wielkość generatorów rozproszonych w promieniowym systemie dys-
trybucji. Uzyskanie optymalnej lokalizacji i wielkości jednostek generatorów rozproszonych, które mają 
być zainstalowane w istniejącym promieniowym systemie dystrybucji, zależy od różnych ograniczeń, które 
czasami nakładają się lub są sprzeczne. Aby poradzić sobie z ograniczeniami i uzyskać optymalną lokali-
zację i rozmiar generatora rozproszonego, w ostatniej dekadzie często opracowywano metaheurystyczne 
algorytmy wyszukiwania i optymalizacji. W niniejszym artykule zaproponowano skuteczną technikę opty-
malizacji, aby przydzielić wiele jednostek generatorów rozproszonych do promieniowego systemu dystry-
bucji. Zaproponowana metoda optymalizacji uwzględnia integrację jednostek generatorów rozproszonych 
opartych na ogniwach fotowoltaicznych w sieciach dystrybucji energii. Opiera się na funkcji wielokryte-
rialnej, która ma na celu maksymalizację poziomu oszczędności netto, poziomu odchylenia napięcia, po-
ziomu utraty mocy czynnej, poziomu redukcji zanieczyszczenia środowiska i poziomu zwarcia. Zapropo-
nowane algorytmy wykorzystujące różne strategie optymalizacji roju cząstek o masie bezwładności (PSO) 
są stosowane w standardowym systemie IEEE 69-autobus oraz w rzeczywistym algierskim systemie dys-
trybucji autobusu 205. Proponowane podejście i projekt tak skomplikowanych, wielozadaniowych funkcji 
ma ostatecznie doprowadzić do znacznej poprawy technicznych, ekonomicznych i środowiskowych aspek-
tów sieci dystrybucyjnych. Stwierdzono, że algorytm EIW-PSO jest najlepszy do zastosowania w systemie 
testowym IEEE 69-bus, ponieważ osiąga maksymalne cele dla różnych wielkości: 75,8359%, 28,9642% 
i 64,2829% odpowiednio dla utraty mocy czynnej, poziomu redukcji zanieczyszczenia środowiska i pozio-
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mu odchylenia napięcia w procesie instalacji jednostek rozproszonych. Dla tej samej liczby generatorów 
rozproszonych, EIW-PSO zapewnia znacznie lepszą wydajność w testach autobusów 205 w mieście Ad-
rar; liczbowo: 72,3080%, 22,2027% i 63,6963% odpowiednio dla utraty mocy czynnej, poziomu redukcji 
zanieczyszczenia środowiska i poziomu odchylenia napięcia. Wyniki symulacji tego badania dowodzą, że 
zaproponowane algorytmy wykazują większą zdolność i skuteczność w ustalaniu optymalnych ustawień 
generatorów rozproszonych. 

Słowa kluczowe: generacja rozproszona oparta na OZE, maksymalizacja efektywności energetycznej,
poziomy techniczno-ekonomiczno-środowiskowe, optymalizacja roju cząstek (PSO), strategie 
masy bezwładności, promieniowy system dystrybucji




