PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation And Stabilization Of Silver Nanoparticles In Ethanol By Phosphinic Acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Redukcja i stabilizacja nanocząstek srebra w etanolu przez kwas fosforowy
Języki publikacji
EN
Abstrakty
EN
Although phosphinic acid (H3PO2) has a powerful reduction potential, the reduction of silver ions by phosphinic acid salt has not yet been reported. In this work, colloidal silver has successfully synthesized by reducing silver ions in ethanol with phosphinic acid as a reducing agent. The effects of [AgNO3]/[H3PO2] ratios and reaction temperature were considered. Spherical silver nanoparticles with cubic structure were successfully prepared and their diameters were measured to be 8.5±0.9 nm − 11.3±0.2 nm. Half-life analysis showed that the reduction of silver ions proceeded with the reaction order of 1.30 on concentration of phosphinic acid and activation energy of 120.7 kJ/mol.
Twórcy
autor
  • Sogang University, Seoul, Republic of Korea
autor
  • Sogang University, Seoul, Republic of Korea
autor
  • Sogang University, Seoul, Republic of Korea
autor
  • Sogang University, Seoul, Republic of Korea
Bibliografia
  • [1] Z. Jia, H. Sun, Q. Gu, Colloids and Surfaces A: Physicochem. Eng. Aspects 419, 174 (2013).
  • [2] T. Ahmad, I. A. Wani, N. Manzoor, J. Ahmed, A. M. Asiri, Colloids and Surfaces B: Biointerfaces 107, 227 (2013).
  • [3] M. Farrag, M. Tschurl, U. Heiz, Chemistry of Materials 25, 862 (2013).
  • [4] G.-Q. Lu, J. N. Galata, Preparation of Stable High Concentration Colloidal Metal Particulate System, U.S. Patent application Publication, US 2008/0089839, 2008.
  • [5] S. J. Son, Y. S. Cho, J. J. Rha, C. J. Choi, J. Kor. Powd. Met. Inst. 20, 120 (2013).
  • [6] B. Wiley, T. Herricks, Y. Sun, Y. Xia, Nano Letters 4, 1733 (2004).
  • [7] A. Chhatre, P. Solasa, S. Sakle, R. Thaokar, A. Mehra, Colloids and Surfaces A: Physicochemical and Engineering Aspects 404, 83 (2012).
  • [8] L. Zhang, Y. Wang, L. Tong, Y. Xia, Langmuir 29, 15719 (2013).
  • [9] R. Sankar, A. Karthik, A. Prabu, S. Karthik, K.S. Shivashangari, V. Ravikumar, Colloids and Surfaces B: Biointerfaces 108, 80 (2013).
  • [10] H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Materials Chemistry and Physics 94, 449 (2008).
  • [11] J. S. Kim, J. Ind. Eng. Chem. 13, 566 (2007).
  • [12] L. H. Bac, W. H. Gu, J. C. Kim, B. K. Kim, J. S. Kim, J. Kor. Powd. Met. Inst. 19, 55 (2012).
  • [13] D. Malina, A. Sobczak-Kupiec, Z. Wzroek, Z. Kowalski, Digest Journal of Nanomaterials and Biostructures 7, 1527 (2012).
  • [14] Y. Chaikin, T. A. Benikov, H. Cohen, A. Vaskevich, I. Rubinstein, J. Materials Chemistry C 1, 3573 (2013).
  • [15] K. J. Harlieb, M. Saunders, C. L. Raston, Chem. Commun. 21, 3074 (2009).
  • [16] G. O. Mallory, J. B. Hajdu, Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society, Inc., New York 1990.
  • [17] U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Berlin 1995.
  • [18] J. G. Eberhart, E. Levin, Simplified Half-life Methods for the Analysis of Kinetic Data, RIAS Technical Report 88.24, 1988.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9fa6147-0eb5-4f68-b6df-741ea6130798
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.